簡易檢索 / 詳目顯示

研究生: 黃聖嘉
Shen-chia Huang
論文名稱: 基因演算法在多使用者多輸入多輸出系統中結合前置編碼及傳送天線選擇與功率分配之應用
Genetic Algorithm-Assisted Joint Precoding and Transmit Antenna Selection with Power Allocation in Multi-user MIMO Systems
指導教授: 方文賢
Wen-hsien Fang
口試委員: 洪賢昇
Hsien-seng Hung
余金郎
Jung-lang Yu
賴坤財
Kuen-tsair Lay
陳郁堂
Yie-tarng Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 60
中文關鍵詞: 基因演算法傳送天線選擇前置編碼功率分配下鏈多使用者多輸入多輸出系統
外文關鍵詞: genetic algorithm, transmit antenna selection, precoding, power allocation, multi-user MIMO downlink
相關次數: 點閱:323下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多輸入多輸出無線通訊系統能夠改善傳統單一天線系統的吞吐量,並且帶來更好的傳輸可靠度,將在未來無線網路高傳輸資料率與高服務品質的需求下扮演相當重要的角色。然而在多輸入多輸出系統中利用配置多重天線獲得效能增益的同時,卻也無可避免地導致多輸入多輸出系統中包含硬體成本例如射頻鏈路增加以及干擾損害例如多重存取干擾加劇等缺陷。

    為了克服上述的缺陷且增加系統的效能,許多可行的技術已經陸續被開發。由於前置編碼能夠補償天線選擇造成的陣列增益損失,另一方面,天線選擇可以彌補進行前置編碼而引起的分集增益損耗,因此結合兩個機制的系統將可以提升整體系統的效能。本論文提出一個簡單而且有效率的基因演算法,或稱作混合式基因演算法,解決在下鏈的有限回授多使用者多輸入多輸出系統中結合考慮傳送天線選擇與量化前置編碼兩獨立機制的問題,期望能在降低硬體複雜度的同時,亦獲得良好的系統效能。接著,更利用混合式基因演算法處理在基地台已知完美通道資訊的情況之下,同時結合傳送天線選擇與最佳前置編碼的問題。最後,我們亦把功率分配納入一起考量,希望可以進一步提升整體效能。本論文提出的新式基因演算法中,每一組染色體分作三個部份: 量化/最佳前置編碼由一個二位元串列表示、傳送天線選擇由一個整數串列表示,而功率分配則由另一個二位元串列所表示。新的交配與突變機制亦將隨著混合式染色體的提出而被使用。

    相關的模擬結果顯示吾人提出的方法相較前人提出的方法,可以獲得更好的系統效能,並且大量、有效地降低運算複雜度。


    Multiple-input multiple-output (MIMO) systems are one of the potential promises to meet the rapidly growing demand for higher transmission data rates
    and better quality of service (QoS) for wireless communications. However, deploying a large number of antennas in MIMO systems also incurs two setbacks. First, the hardware cost will increase. Second, the interference impairment becomes more pronounced.

    Many enabling technologies have been developed to alleviate these inevitable setbacks. Since the precoding can compensate for the loss of array gain during antenna selection and the antenna selection can offset the degradation of diversity in the precoding, it is advantageous to combine both techniques to enhance the overall system performance. In this thesis we propose a simple and efficient genetic algorithm-assisted approach for simultaneously selecting the quantized precoding vectors and the transmit antenna subset in the downlink of multi-user MIMO systems with limited feedback. We then extend this GA approach to joint optimal precoding and transmit antenna selection when perfect channel state information (CSI) is available at the base station (BS). The power allocation is taken into consideration as a whole to further enhance the system performance. In the new GA approaches, each chromosome can be divided into a bit string for quantized/optimal precoding, an integer string for transmit antenna selection, and a bit string for power allocation. In addition, new crossover and mutation operations are addresses to accommodate these new chromosomes.

    Furnished simulations show that the proposed new GA approaches indeed yield superior performance with reduced computational complexity overhead compared with previous works in various scenarios.

    1 Introduction 2 Background Overview 2.1 Single-user MIMO Systems 2.2 Multi-user MIMO Systems 2.3 Precoding Techniques 2.4 Antenna Selection 2.5 Genetic Algorithms 2.6 Summary 3 GA-Assisted Joint Precoding and Transmit Antenna Selection with Power Allocation in Multi-user MIMO Systems 3.1 Introduction 3.2 Joint Quantized Precoding and Transmit Antenna Selection in Multi-user MIMO Systems 3.3 Joint Optimal Precoding and Transmit Antenna Selection in Multi-user MIMO Systems 3.4 Power Allocation 3.5 Simulations and Discussions 3.6 Summary 4 Conclusions Bibliography

    [1] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a
    fading environment when using multiple antennas,” Wireless Personal Com-
    munications, vol. 6, pp. 311-335, 1998.
    [2] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless
    Communications. Cambridge University Press, 2003.
    [3] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge University Press, 2005.
    [4] G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P.W. Wolniansky, “Sim-
    plified processing for high spectral efficiency wireless communications em-
    ploying multi-element arrays,” IEEE J. Select. Areas Commun., vol. 17, pp.
    1841-1852, Nov. 1999.
    [5] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high
    data rate wireless communication: Performance criterion and code construction,” IEEE Trans. on Inform. Theory, vol. 44, pp. 744-765, Mar. 1999.
    [6] S. Alamouti, “A simple transmit diversity scheme for wireless communica-
    tions,” IEEE J. Select. Areas Commun., vol. 17, pp. 1451-1458, Oct. 1998.
    [7] Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multi-user MIMO downlink,” IEEE Commun. Mag., pp. 60-67,
    Oct. 2004.
    [8] S. Sanayei and A. Nosratinia, “Antenna selection in MIMO systems,” IEEE
    Commun. Mag. vol. 42, pp. 68-73, Oct. 2004.
    [9] A. F. Molisch and M. Z. Win, “MIMO systems with antenna selection,” IEEE
    Microwave Mag. vol. 5, no. 1, pp. 46-56, Mar. 2004.
    [10] R. W. Heath, S. Sandhu, and A. Paulraj, “Antenna selection for spatial multiplexing systems with linear receivers,” IEEE Commun. Letters, vol. 5, no.
    4, pp. 142-144, Apr. 2001.
    [11] A. Gorokhov, D. A. Gore, and A. J. Paulraj, “Receive antenna selection for MIMO spatial multiplexing: theory and algorithms,” IEEE Trans. on Sig.
    Proc., vol. 51, no. 11, pp. 2796-2807, Nov. 2003.
    [12] M. Gharavi-Alkhansari and A. B. Gershman, “Fast antenna subset selection
    in MIMO systems,” IEEE Trans. Sig. Proc., vol. 52, no. 2, pp. 339-347, Feb.
    2004.
    [13] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans.
    Sig. Proc., vol. 52, no. 2, pp. 461-471, Feb. 2004.
    [14] L. U. Choi and R. D. Murch, “A transmit preprocessing technique for mul-
    tiuser MIMO systems using a decomposition approach,” IEEE Trans. on
    Wireless Commun., vol. 3, no. 1, pp. 20-24, Jan. 2004.
    [15] L. L. Yang, “A zero-forcing multiuser transmitter preprocessing scheme for downlink communications,” IEEE Trans. Commun., vol. 56, no. 6, pp. 862-
    865, June 2008.
    [16] D. J. Love, R. W. Heath, W. Santipach, and M. L. Honig, “What is the value of limited feedback for MIMO channels,” IEEE Commun. Mag., vol. 42, no.
    10, pp. 54-59, Oct. 2004.
    [17] D. J. Love, R. W. Heath, and T. Strohmer, “Grassmannian beamforming
    for multiple-input multiple-output wireless systems,” IEEE Trans. Inform.
    Theory, vol. 49, no. 10, pp. 2735-2747, Oct. 2003.
    [18] D. J. Love and R. W. Heath, “Limited feedback unitary precoding for spatial multiplexing systems,” IEEE Trans. Inform. Theory, vol. 51, no. 8, pp. 2967-2976, Aug. 2005.
    [19] D. J. Love, R. W. Heath, V. K. N. Lau, D. Gesbert, B. D. Rao, and M. An-
    drews, “An overview of limited feedback in wireless communication systems,”
    IEEE Jour. Select. Areas in Commun., vol. 26, no. 8, pp. 1341-1365, Oct. 2008.
    [20] R. Chen, R. W. Heath, and J. G. Andrews, “Transmit selection diversity
    for unitary precoded multiuser spatial multiplexing systems with linear receivers,” IEEE Trans. Sig. Proc., vol. 55, no. 3, pp. 1159-1171, Mar. 2007.
    [21] W. Santipach, “Quantized transmit beamforming with antenna selection in
    a MIMO channel,” in Proc. Int. Wireless Commun. Mobile Comput. Conf.
    (IWCMC 2009), pp. 1238-1242, June 2009.
    [22] T. Pande, D. J. Love, and J. V. Krogmeier, “Reduced feedback MIMO-OFDM
    precoding and antenna selection,” IEEE Trans. Sig. Proc., vol. 55, no. 5, pp.
    2284-2293, May 2007.
    [23] J. H. Holland, Genetic Algorithms. Sci. Am. 1992.
    [24] Y. Hong and Z. Dong, “Genetic algorithms with applications in wireless communications,” International Journal of Systems Science, vol. 35, no. 13-14,
    pp. 751-762, Oct. 2004.
    [25] M. Jiang and L. Hanzo, “Multiuser MIMO-OFDM for next-generation wireless systems,” IEEE Proceedings, vol. 95, no. 7, pp. 1430-1469, July 2007.
    [26] G. Syswerda and J. Palmucci, “The application of genetic algorithms to resource scheduling,” in Proc. the 4th Int. Conf. on Genetic Algorithm, pp.
    502-508, 1991.
    [27] K. Yen and L. Hanzo, ”Genetic algorithm assisted joint multi-user symbol
    detection and fading channel estimation for synchronous CDMA systems,”
    IEEE J. Sel. Areas Commun., vol. 19, no. 6, pp. 985-998, June 2001.
    [28] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Trans. on Telecom., vol. 10, no. 6, pp. 585-595, Nov/Dec 1999.
    [29] D. J. Love. Grassmannian Subspace Packing. [Online] Available: http:
    //cobweb.ecn.purdue.edu/∼djlove/packings/one_d/
    [30] G. Mitsuo and C. Runwei, Genetic Algorithms and Engineering Design. Wiley,
    New York, 1997.
    [31] S. Fang, L. H. Li, and P. Zhang, “Grassmannian precoding MU-MIMO
    scheme,” Journal of China Universities of Posts and Telecommunications,
    vol. 15, no. 3, pp. 105-109, Sep. 2008.
    [32] D. S. Watkins, Fundamentals of Matrix Computations. Wiley, 1991.
    [33] G. H. Golub and C. F. Van Loan, Matrix computations. Baltimore, MD:The
    Johns Hopkins Univ. Press, 2002.
    [34] H.-Y. Lu and W.-H. Fang, “Joint receive antenna selection and symbol detection for MIMO systems: a heterogeneous genetic approach,” IEEE Commun.
    Letters, vol. 13, no. 2, pp. 97-99, Feb. 2009.
    [35] S.-C. Huang, W.-H. Fang, H.-S. Chen, and Y.-T. Chen, “Hybrid genetic algorithm for joint precoding and transmit antenna selection in multiuser MIMO
    systems with limited feedback,” in Proc. IEEE Vehicular Technology Conf.,
    May 2010.
    [36] G. Dimic and N. D. Sidiropoulos, “On downlink beamforming with greedy user selection: Performance analysis and a simple new algorithm,” IEEE Trans.
    Sig. Proc., vol. 53, no. 10, pp. 3857-3868, Oct. 2005.
    [37] W. Ajib and D. Haccoun, “An overview of scheduling algorithms in
    MIMO-based fourth-generation wireless systems,” IEEE Network, pp. 43-48,
    Sep./Oct. 2005.

    QR CODE