簡易檢索 / 詳目顯示

研究生: 張劭鴻
SHAO-HUNG CHANG
論文名稱: 具有p型埋入層的碳化矽功率金氧半場效電晶體
Thin-film SiC Power MOSFET with p-type Buried Layer
指導教授: 莊敏宏
Min-Hong Jhuang
口試委員: 徐世祥
Shi-Xiang Xu
張勝良
Sheng-Liang Zhang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 47
中文關鍵詞: 功率元件碳化矽
外文關鍵詞: Power MESFET
相關次數: 點閱:289下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,碳化矽(SiC)被廣泛研究使用,而隨著功率元件的蓬勃發展,將碳化矽用來作為功率元件的材料之研究也越來越多,因此本論文即是在探討用碳化矽來當作材料之功率電晶體之研究。
此研究目的就是致力於製作一個在擁有高耐壓能力時也能通過大電流的SiC MOSFET,我們提出一種在SiC MOSFET中埋入一層p型層的結構,藉此提高元件的耐壓能力。而為了近一步提升元件導狀態下的導通電流且使耐壓能力維持在我所設的目標值:1100 V,我們將元件加厚的同時持續將漂移區濃度下降,結果發現這樣的改變能大幅提升元件的導通能力。在導通狀態下,閘極偏壓15伏和汲極偏壓3伏時,電流成長了百分之三十。


In recent years, silicon carbide (SiC) is widely researched and used, and with the vigorous development of power device, there are more and more research on the use of silicon carbide as a material for power device. The purpose of this research is to form a thin-film SiC MOSFET that shows a small on-state voltage drop with excellent blocking characteristics. We propose a structure in which a p-type layer is buried in silicon carbide MOSFET, which show a higher blocking voltage than the structure without adding a p-type layer. In order to improve the on-state characteristics of the device, the film thickness is increased. Furthermore, the degraded breakdown voltage, due to the increased film thickness, may be improved by simultaneously lowering the doping concentration of drift region. As a result, this device can cause an improvement more than 30% of the on-state current than the conventional SiC device, at a gate bias of 15 V and a drain bias of 3 V and for a blocking voltage of 1100 V.

Contents Abstract (Chinese) i Abstract ii Acknowledgements (Chinese) iii Contents iv Table Lists v Figure Captions vi Chapter 1 Introduction 1 1-1 Motivation 1 1-1-1 Different between SiC and Si 1 1-1-2 The intrinsic concentration of Si and SiC 2 1-2 Conventional SiC power MESFET 3 1-3 Conventional SiC power MOSFET 4 Chapter 2 Device Fabrication 5 2-1 The conventional SiC power MESFET 5 2-2 The conventional SiC power MOSFET 7 2-3 The SiC power MOSFET with long p-type layer 11 2-4 The SiC power MOSFET with short p-type layer 16 Chapter 3 Results and Discussion 21 3-1 The conventional SiC power MESFET 21 3-1-1 The off-state electrical characteristic 21 3-1-2 The on-state electrical characteristic 23 3-2 The conventional SiC power MOSFET 24 3-2-1 The off-state electrical characteristic 25 3-2-2 The on-state electrical characteristic 26 3-3 The SiC power MOSFET with long p-type layer 27 3-3-1 The off-state electrical characteristic 27 3-3-2 The on-state electrical characteristic 29 3-3-3 The off-state electrical characteristic of SiC power MOSFET with long p-type layer and increasing thickness 30 3-3-4 The on-state electrical characteristic of SiC power MOSFET with long p-type layer and increasing thickness 31 3-4 The SiC power MOSFET with short p-type layer 33 3-4-1 The off-state electrical characteristic 33 3-4-2 The on-state electrical characteristic 34 Chapter 4 Conclusions 36 Reference 37

[1] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd Eds. Wiley Interscience, 2007.

[2] D. Okamoto, H. Yano, T. Hatayama, and T. Fuyuki, “Systematic Investigation of Interface Properties in 4H-SiC MOS Structures Prepared by Over-Oxidation of Ion-Implanted Substrates,” Mater. Sci. Forum., pp. 495-498, 2010.

[3] B. J. Baliga, Fundamentals of Power Semiconductor Devices, Springer, 2008.

[4] Y. K. Sharma, A. C. Ahyi, T. Issacs Smith, X. Shen, S. T. Pantelides, X. Zhu, L. C. Feldman, J. Rozen, and J. R. Williams, “Phosphorous passivation of the SiO2/4H–SiC interface,” Solid-State Electronics, vol. 68, pp. 103-107, 2012.

[5] S. Salemi, N. Goldsman, D. P. Eittsserry, A. Akturk, and A. Lelis, “The effect of defects and their passivation on the density of states of the 4H-silicon-carbide/silicon-dioxide interface,” J. Appl. Phys., Vol. 113, pp. 053703-1-5, 2013.

[6] T. Hosoi, K. Konzono, Y. Uenishi, S. Mitani, Y. Nakano, T. Nakamura, T. Shimura, and H. Watanabe, “Investigation of Surface and Interface Morphology of Thermally Grown SiO2 Dielectrics on 4H-SiC (0001) Substrates,” Mater. Sci. Forum., pp. 342-345, 2011.

[7] H. Li, S. Dimitrijev, H. B. Harrison, and D. Sweatman, “Interfacial characteristics of N2O and NO nitride SiO2 grown on SiC by rapid thermal processing” Appl. Phys. Lett, vol. 70, pp. 2028-2030, 1997.

[8] M. Bhatnagar, P. K. McLarty, and B. J. Baliga, “Silicon-Carbide High-Voltage (400 V) Schottky Barrier Diodes,” IEEE Electron Device Lett, vol.13, pp. 501-503, 1992.

[9] R. Raghunathan, D. Alok, and B. J. Baliga, “High Voltage 4H-SiC Schottky Barrier Diodes,” IEEE Electron Device Lett, vol. 16, pp. 226-227, 1995.

[10] A. Itoh, T. Kimoto, and H. Matsunami, “High Performance of High-Voltage 4H-SiC Schottky Barrier Diode,” IEEE Electron Device Lett, vol. 16, pp. 280-282, 1995.

[11] K. Ueno, T. Urushidani, K. Hashimoto, and Y. Seki, “The Guard-Ring Termination for the High-Voltage SiC Schottky Barrier Diodes,” IEEE Electron Device Lett. vol. 16, pp. 331-332, 1995.

[12] Gibbs, George (EDT), “Physics and Technology of Silicon Carbide Devices,” Scitus Academics Llc, pp. 291-311, 2016.

[13] S. Sriram, H. Hagleitner, D. Namishia, T. Alcorn, T. Smith, and B. Pulz, “High-Gain SiC MESFETs Using Source-Connected Field Plates,” IEEE Electron Device LETT, vol. 30, pp. 952-953, 2009.

[14] K. Song, C. C. Chai, Y. T. Yang, X. J. Zhang, and B. Chen, “Improvement in breakdown characteristics of 4H-SiC MESFET with a gate-drain surface epi-layer and optimization of the structure,” Acta. Phys. Sin. vol.61, pp. 027202-1-6, 2012.

[15] S. P. Murray, and K. P. Roenker, “An analytical model for SiC MESFETs,” Solid-State Electron, vol. 46, pp. 1495-1505, 2002.

[16] X. J. Zhang, Y. T. Yang, B. X. Duan, B. Chen, C. C. Chai, and K. Song, “New 4H silicon carbide metal semiconductor field-effect transistor with a buffer layer between the gate and the channel layer,” Chinese physics vol. 21, pp. 017201-1-7 ,2012.

[17] T. Liu, R. Ning, T. T. Y. Wong, and Z. J. Shen, “Modeling and Analysis of SiC MOSFET Switching Oscillations,” IEEE Journal of Emerging and Selected Topics in Power Electronics vol. 4, pp. 747-756, 2016.

[18] W. Sung, and B. J. Baliga, “Monolithically Integrated 4H-SiC MOSFET and JBS Diode (JBSFET) Using a Single Ohmic/Schottky Process Scheme,” IEEE Electron Device Lett. vol. 37, pp. 1605-1608, 2016.

[19] C. Li, H. Luo, C. Li, W. Li, H. Yang, and X. He, “Online Junction Temperature Extraction of SiC Power mosfets With Temperature Sensitive Optic Parameter (TSOP) Approach,” in IEEE Transactions on Power Electronics, vol. 34, pp. 10143-10152, 2019.

[20] J. Wei, S. Liu, S. Li, J. Fang, T. Li, and W. Sun, “Comprehensive Investigations on Degradations of Dynamic Characteristics for SiC Power MOSFETs Under Repetitive Avalanche Shocks,” in IEEE Transactions on Power Electronics, vol. 34, pp. 2748-2757, 2019.

[21] V. Soler, M. Cabello, M. Berthou, J. Montserrat, J. Rebollo, J. Montserrat, P. Godignon, A. Mihaila, M. R. Rogina, A. Rodriguez, and J. Sebastian, “High-Voltage 4H-SiC Power MOSFETs With Boron-Doped Gate Oxide,” in IEEE Transactions on Industrial Electronics, vol. 64, pp. 8962-8970, 2017.

無法下載圖示 全文公開日期 2025/06/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE