簡易檢索 / 詳目顯示

研究生: 溫禪儒
Chan-Ju Wen
論文名稱: 單晶矽與藍寶石晶圓化學機械平坦化之拋光墊有效壽命指標分析研究
Analysis on Effective Lifetime Index of Polishing Pad for CMP Process of Monocrystalline Silicon Wafers and Sapphire
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 張充鑫
Chung-Shin Chang
鍾俊輝
Chun-Hui Chung
楊棋銘
Chih-Ming Yang
鄧建中
Chien-Chung Teng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 213
中文關鍵詞: 化學機械平坦化藍寶石晶圓矽晶圓拋光墊有效壽命指標承壓比溝槽深度
外文關鍵詞: Pad effective lifetime index, Sapphire wafer, Silicon wafer, Bearing Area Ratio, Groove depth, CMP
相關次數: 點閱:336下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自遠古時期的銅鏡、玉石、珠寶的研磨拋光到目前次奈米等級的半導體晶圓鏡面拋光,機械式拋光有其一定程度之極限,因此化學機械平坦化(Chemical Mechanical Planarization)是目前可同時進行大面積平坦化且兼顧次奈米表面粗糙度的重要關鍵性技術。其中拋光墊(Polishing Pad)與拋光液(Slurry)在化學機械平坦化製程中佔了重要的地位,但目前僅能從平坦化後的晶圓品質或是製程時間來評估拋光墊的更換時機,因此本研究利用雷射共焦儀(Confocal Laser)以承壓比(Bearing Area Ratio)分析拋光墊承壓區,並定義為有效使用壽命,以長時間的拋光製程觀察SUBA800之溝槽深度對於藍寶石(Sapphire)及矽(Silicon)晶圓在平坦化製程中的影響。實驗結果發現到溝槽深度降至約220 μm時拋光墊對於晶圓的材料移除率僅剩不到50%。本實驗定義拋光墊初始溝槽深度與剩餘之溝槽深度比值為PELI(Pad Effective Lifetime Index),降至0.5後即需更換拋光墊,可作為使用者評估更換時機之有效參考指標。


    Since ancient times, polishing has been a process critical to bronze mirrors, jade and jewelry grinding until modern wafer planarization in semiconductor industry’s. However, mechanical polishing has certain limitation, the chemical mechanical planarization (CMP) is a key technology available to achieve global flatness and local sub-nanometer surface roughness. Polishing pad and slurry are major accessories in CMP process. Currently, the quality of wafer or process time is cred to assess the replacement time of polishing pad. In this study, a confocal laser measuring machine of bearing area ratio (BAR) is used to measure the major work layer of polishing pad and an pad effective lifetime can be obtained by observing the influence of depth of pad groove in wafer planarization process by long time polishing of sapphire and silicon wafers. When the groove depth of pad is down to about 220 μm, the removal rate is less than 50% for both wafers. In this study, the initial groove depth and the remaining groove depth ratio on polishing pad is defined as an index of pad effective lifetime index (PELI). Thus the pad needs to be replaced when the PELI value is down to 0.5. The PELI can be used as a reference index for users to assess the timing of replacing polishing pad.

    摘要 II Abstract III 誌謝 IV 目錄 VIII 圖目錄 XI 表目錄 XX 名詞與符號表 XXIII 第一章 導論 1 1.1 研究背景 1 1.2 研究目的 5 1.3 研究方法 6 1.4 論文架構 7 第二章 文獻回顧 10 2.1 矽晶圓拋光相關文獻 10 2.2 藍寶石晶圓拋光相關文獻 28 2.3 拋光墊相關文獻探討 40 2.4 CMP與MCP移除機制 55 2.4.1 矽晶圓拋光 56 2.4.2 藍寶石晶圓拋光 57 2.5 文獻回顧總結 59 第三章 拋光墊壽命分析 62 3.1 承壓面積比理論 62 3.2 平坦化製程模型建立 68 3.3 拋光墊壽命評估 72 第四章 實驗設備與規劃 76 4.1 實驗設備 76 4.2 量測設備 77 4.3 實驗耗材 78 4.3.1 拋光墊 78 4.3.2 晶圓 79 4.3.3 拋光液 79 4.3.4 鑽石修整器 81 4.4 實驗規劃 82 4.4.1 拋光墊承壓比分析實驗(實驗A) 83 4.4.2 晶圓拋光實驗(實驗B) 84 4.4.3 拋光墊分析實驗(實驗C) 85 第五章 結果與討論 86 5.1 拋光墊承壓比分析(實驗A) 87 5.1.1 拋光墊溝槽觀察與膨脹率 87 5.1.2 拋光墊承壓比與Break-in分析 90 5.1.3 拋光墊製程中修整時間 94 5.2 藍寶石晶圓拋光實驗(實驗B1) 98 5.2.1 拋光墊溝槽深度變化與藍寶石晶圓材料移除率 99 5.2.2 藍寶石晶圓曲率半徑及FWHM 104 5.2.3 藍寶石晶圓表面粗糙度 109 5.2.4 藍寶石晶圓厚度變異量與非均勻性 111 5.3 矽晶圓拋光實驗(實驗B2) 113 5.3.1 拋光墊溝槽深度變化與矽晶圓材料移除率 114 5.3.2 矽晶圓曲率半徑及FWHM 119 5.3.3 矽晶圓表面粗糙度 123 5.3.4 矽晶圓厚度變異量與非均勻性 125 5.4 拋光墊分析實驗(實驗C) 127 5.4.1 拋光墊三區總厚度變化 127 5.4.2 拋光墊基本物理性質 131 5.4.3 拋光墊微結構觀察 134 5.4.4 拋光墊涵養性能 139 5.4.5 拋光墊散佈性分析 142 5.5 綜合結果討論 148 第六章 結論與建議 154 6.1 結論 154 6.2 建議 155 參考文獻 158 附錄A、量測設備 163 附錄B、矽晶圓表面形貌 171 附錄C、藍寶石晶圓表面形貌 175 附錄D、XRC量測與校正方法 179 附錄E、晶圓XRC五點繞射峰位置圖 181 作者簡介 185

    [1] 薛慶堂,"化學機械拋光之拋光墊性能分析與平坦化加工研究",國立臺灣科技大學,機械工程系論文,2011。
    [2] G. Byrne, B. Mullany, and P. Young, "The Effect of Pad Wear on the Chemical Mechanical Polishing of Silicon Wafers", CIRP Annals - Manufacturing Technology, vol. 48, pp. 143-146, 1999.
    [3] B. Mullany, "The effect of slurry viscosity on chemical–mechanical", Materials Processing Technology, 2003.
    [4] J. Xu, J. B. Luo, L. L. Wang, and X. C. Lu, "The crystallographic change in sub-surface layer of the silicon single crystal polished by chemical mechanical polishing", Tribology International, vol. 40, pp. 285-289, 2007.
    [5] L. C. Zhang, A. Q. Biddut, and Y. M. Ali, "Dependence of pad performance on its texture in polishing mono-crystalline silicon wafers", International Journal of Mechanical Sciences, vol. 52, pp. 657-662, 2010.
    [6] Y. G. Wang, L. C. Zhang, and A. Biddut, "Chemical effect on the material removal rate in the CMP of silicon wafers", Wear, vol. 270, pp. 312-316, 2011.
    [7] H. Wang, Z. Song, W. Liu, and H. Kong, "Effect of hydrogen peroxide concentration on surface micro- roughness of silicon wafer after final polishing", Microelectronic Engineering, vol. 88, pp. 1010-1015, 2011.
    [8] A. Pineiro, A. Black, J. Medina, E. Dieguez, and V. Parra, "The use of potassium peroxidisulphate and OxoneR as oxidizers for the chemical mechanical polishing of silicon wafers", Wear, vol. 303, pp. 446-450, 2013.
    [9] X. H. Niu, Y. L. Liu, B. M. Tan, L. Y. Han, and J. X. Zhang, "Method of surface treatment on sapphire substrate", Transactions of Nonferrous Metals Society of China, vol. 16, pp. s732-s734, 2006.
    [10] X. Hu, Z. Song, Z. Pan, W. Liu, and L. Wu, "Planarization machining of sapphire wafers with boron carbide and colloidal silica as abrasives", Applied Surface Science, vol. 255, pp. 8230-8234, 2009.
    [11] Z. Zhang, W. Liu, Z. Song, and X. Hu, "Two-Step Chemical Mechanical Polishing of Sapphire Substrate", Journal of The Electrochemical Society, vol. 157, p. H688, 2010.
    [12] W. Xu, X. Lu, G. Pan, Y. Lei, and J. Luo, "Ultrasonic flexural vibration assisted chemical mechanical polishing for sapphire substrate", Applied Surface Science, vol. 256, pp. 3936-3940, 2010.
    [13] Z. Zhang, W. Yan, L. Zhang, W. Liu, and Z. Song, "Effect of mechanical process parameters on friction behavior and material removal during sapphire chemical mechanical polishing", Microelectronic Engineering, vol. 88, pp. 3020-3023, 2011.
    [14] H. M. Kim, R. Manivannan, D. J. Moon, H. Xiong, and J. G. Park, "Evaluation of double sided lapping using a fixed abrasive pad for sapphire substrates", Wear, vol. 302, pp. 1340-1344, 2013.
    [15] 蔡松霖,"新型熱熔膠拋光墊的研製及其對單晶矽與不銹鋼材料之拋光研究",國立中央大學,2011。
    [16] 黃星豪,"藍寶石晶圓拋光加工之摩擦力與拋光墊機械性質分析研究",國立臺灣科技大學,機械工程系論文,2013。
    [17] K. H. Park, H. J. Kim, O. M. Chang, and H. D. Jeong, "Effects of pad properties on material removal in chemical mechanical polishing", Journal of Materials Processing Technology, vol. 187-188, pp. 73-76, 2007.
    [18] K. Park, J. Park, B. Park, and H. Jeong, "Correlation between break-in characteristics and pad surface conditions in silicon wafer polishing", Journal of Materials Processing Technology, vol. 205, pp. 360-365, 2008.
    [19] J. G. Choi, Y. N. Prasad, I. K. Kim, W. J. Kim, and J. G. Park, "The Synergetic Role of Pores and Grooves of the Pad on the Scratch Formation during STI CMP", Journal of The Electrochemical Society, vol. 157, p. H806, 2010.
    [20] Y. Guo, H. Lee, Y. Lee, and H. Jeong, "Effect of pad groove geometry on material removal characteristics in chemical mechanical polishing", International Journal of Precision Engineering and Manufacturing, vol. 13, pp. 303-306, 2012.
    [21] I. H. Sung, H. J. Kim, and C. D. Yeo, "First observation on the feasibility of scratch formation by pad–particle mixture in CMP process", Applied Surface Science, vol. 258, pp. 8298-8306, 2012.
    [22] E. S. Lee, J. W. Cha, and S. H. Kim, "Evaluation of the wafer polishing pad capacity and lifetime in the machining of reliable elevations", International Journal of Machine Tools and Manufacture, vol. 66, pp. 82-94, 2013.
    [23] 黃韋翰,"新式超精密拋光機之矽晶圓拋光特性研究",國立中山大學,機械與機電工程學系論文,2003。
    [24] 姚昶劦,"連續複合電鍍磨盤式超精密拋光機之研發及矽晶圓拋光特性",國立中山大學,機械與機電工程學系論文,2002。
    [25] 林明獻,"矽晶圓半導體材料技術",2001。
    [26] 古振瑭,"乾式機械化學拋光在單晶藍寶石晶圓之平坦化加工研究",國立臺灣科技大學,機械工程系論文,2004。
    [27] H. W. Gutsche, "Polishing of Sapphire with Colloidal Silica", Solid State Science & Technology, 1978.
    [28] 李志宏,"磊晶用藍寶石晶圓表面超拋光製程之研究",國立清華大學,工程與系統科學系論文,2003。
    [29] T. G. KING, "Describing Sistribution Shape:Rk and Central Moment Approaches Compared", Pergamon, p. 6, 1995.
    [30] 王柏凱,"雷射共軛焦三維表面形貌量測儀開發應用於拋光墊之碎形維度和承載比分析",國立臺灣科技大學,機械工程系論文,2013。
    [31] J. P. Davim, "Surface Integrity in Machining", 2010。
    [32] C. C. A. Chen, "Handout of manufacturing analysis", 2011。
    [33] Y. H. Yu, M. O. Lai, L. Lu, and P. Yang, "Measurement of residual stress of PZT thin film on Si(100) by synchrotron X-ray rocking curve technique", Journal of Alloys and Compounds, vol. 449, pp. 56-59, 2008.
    [34] 林麗娟,"X光繞射原理及其應用",X光材料分析技術與應用專題, 1994.
    [35] 林彥德,"應用X-Ray量測技術研究薄膜應力特性與銅薄膜化學機械拋光製程之影響",國立臺灣科技大學,機械工程系論文,2007。

    QR CODE