簡易檢索 / 詳目顯示

研究生: 書合毅
He-Yi SHU
論文名稱: 空間向量脈波寬度調變結合預測控制之 三相全橋換流器研製
Design and Implementation of Three Phase Full Bridge Inverter Using Space Vector Pulse Width Modulation Combining with Prediction Control
指導教授: 黃仁宏
Jen-Hong Huang
林景源
Jing-Yuan Lin
邱煌仁
Huang-Jen Chiu
口試委員: 黃仁宏
Ren-Hong Huang
林景源
Jing-Yuan Lin
邱煌仁
Huang-Jen Chiu
張佑丞
Yu-Cheng Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 88
中文關鍵詞: 高頻空間向量脈波寬度調變預測控制氮化鎵損耗分析
外文關鍵詞: High frequency, SVPWM, prediction control, gallium nitride FET, loss analysis
相關次數: 點閱:463下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以數位控制方式實現一台三相換流器系統,一般高頻閉迴路控制會受限於數位晶片計算時間壓縮問題,須採取多次切換週期才觸發一次中斷事件,將造成責任週期於數個週期後才可更新一次,在換流器的應用下,責任週期必須隨著輸出交流電壓時變,否則將導致電壓諧波失真增加。因此本文提出新型的控制方式,在一個中斷事件下,閉迴路系統與空間向量脈波寬度調變得到目前狀態訊號。同時,電流預測控制可得出下一態的切換信號,並透過或閘元件結合,達成倍頻以及降低電壓諧波失真的效果。硬體架構方面,採用三相全橋式拓樸實現。功率開關元件選用氮化鎵作為半導體材料,寬能隙以及高電子遷移率的特性使開關元件更適合操作在高頻與高功率的情況。
    經過嚴謹的設計與損耗分析後,研製出操作頻率200 kHz,輸入直流電壓360 V~400 V,輸出交流電壓220 Vac,輸出功率3300 W之預測控制結合空間向量脈波寬度調變三相全橋換流器。實作證明,本文控制技術對比傳統控制法在三相電壓諧波失真皆可達到改善的效果。


    This thesis uses digital controller to implement three-phase inverter. Generally, high-frequency control is limited by the processing time and force interrupt event be triggered by several switching cycles, resulting in duty cycle can’t be updated immediately. In the application of the inverter, it will cause voltage harmonic distortion. Therefore, new control method is proposed. In an interrupt event, SVPWM combine with prediction control will get current state signal and next state signal, through the OR gate element can add them to achieve the effect of frequency doubling and low voltage harmonics. Topology uses a Three-Phase Full-Bridge architecture. GaN devices are used as the power switches. The wide energy gap and high electron mobility characteristics make the switch more suitable for operating at high frequencies and high power.
    After rigorous design and loss analysis, Three-Phase Full-Bridge Inverter Using Space Vector Pulse Width Modulation Combine with Prediction Control is implemented. Operating frequency is 200 kHz, input DC voltage is 360 V~400 V, output AC voltage is 220 Vac, and output power is 3300 W. It has been proved that the control strategy in this thesis can improve the three-phase voltage harmonic distortion in comparison with the traditional control method.

    目錄 摘要 i Abstract ii 誌謝 iii 目錄 iv 圖索引 vii 表索引 x 第一章 緒論 1 1.1 研究動機與目的 1 1.2 章節大綱 2 第二章 三相全橋換流器 3 2.1 三相換流器架構介紹 3 2.1.1 全橋式換流器 3 2.1.2 二極體箝位式換流器 4 2.1.3 T型式換流器 5 2.2 座標軸轉換 6 2.3 調變技術介紹 8 2.3.1 正弦脈波寬度調變 8 2.3.2 空間向量脈波寬度調變 10 2.3.3 載波注入脈波寬度調變 15 2.4 電路區間介紹 17 第三章 控制方式與韌體規劃 24 3.1 三相換流器控制模型推導 24 3.2 控制器設計 26 3.2.1 電流迴路設計 26 3.2.2 電壓迴路設計 27 3.3 預測控制技術 28 3.4 控制時序說明 30 3.4.1 傳統SVPWM閉迴路控制時序 30 3.4.2 預測控制結合SVPWM閉迴路控制時序 31 3.5 數位控制器規格 32 3.6 程式流程圖 33 3.7 程式執行時間比較 34 第四章 電路設計 39 4.1 元件設計 39 4.1.1 輸出濾波電感設計 39 4.1.2 輸出濾波電容設計 44 4.1.3 開關元件選用 44 4.2 損耗分析 48 4.2.1 輸出電感損耗 48 4.2.2 開關元件損耗 50 4.2.3 總損耗分析 55 第五章 模擬與實驗結果 57 5.1 模擬驗證 57 5.2 實作波形 64 5.3 實驗數據比較 68 第六章 結論與未來展望 72 6.1 結論 72 6.2 未來展望 72 參考文獻 73

    [1]C. Meza, J. J. Negroni, D. Biel, and F. Guinjoan, "Energy-balance modeling and discrete control for single-phase grid-connected PV central inverters," IEEE Trans. Ind. Electron, vol. 55, no. 7, pp. 2734–2743, Jul. 2008.
    [2]M. Aamir, K. A. Kalwar, and S. Mekhilef, "Review: Uninterruptible Power Supply (UPS) system," Renewable and Sustainable Energy Reviews, vol. 58, pp. 1395-1410. May. 2016.
    [3]Xiaozeng Xu, Yeshong Li, Yi Qin. "Robust Control of Induction Motor with a Neutral Identification." Advances in System Science and Applications, 2003, 3(3), pp. 375-382.
    [4]Mohan, Undeland , Robbins,電力電子學,江炫章譯,第三版,全華出版社,2016年。
    [5]Yoon-Hyuk Ko, Byoung-Gun Park, Rae-Young Kim, Dong-Seok Hyun and Ha-Jin Jung, "A simple space vector PWM scheme with neutral point balancing for three-level neutral point clamped inverter," 2011 IEEE Industry Applications Society Annual Meeting, Orlando, FL, 2011, pp. 1-6.
    [6]A. Yang, L. Pamungkas, Y. Chang, J. Lin and H. Chiu, "Design and Implementation of 6 kW Three-Phase T-Type Inverter for Microgrid Application," 2018 International Conference on Applied Engineering (ICAE), Batam, 2018, pp. 1-5.
    [7]A. Iqbal, A. Lamine, I. Ashraf and Mohibullah, "Matlab/Simulink Model of Space Vector PWM for Three-Phase Voltage Source Inverter," Proceedings of the 41st International Universities Power Engineering Conference, Newcastle-upon-Tyne, 2006, pp. 1096-1100.
    [8]A. M. Hava, R. J. Kerkman, and T. A. Lipo, "Simple Analytical and Graphical Tools for Carrier Based PWM Methods," IEEE Power Electronics Specialists Conference, vol. 2, pp. 1462-1471, June 1997.
    [9]Keliang Zhou and Danwei Wang, "Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis [three-phase inverters]," in IEEE Transactions on Industrial Electronics, vol. 49, no. 1, pp. 186-196, Feb. 2002.
    [10]M. P. Kazmierkowski and L. Malesani, "Current control techniques for three-phase voltage-source PWM converters: a survey," in IEEE Transactions on Industrial Electronics, vol. 45, no. 5, pp. 691-703, Oct. 1998.
    [11]D. K. Setiawan, Y. Megantara and B. N. Syah, "Three phase inverter of UPS control system for harmonic compensator and power factor correction using modified synchronous reference frame," 2015 International Electronics Symposium (IES), Surabaya, 2015, pp. 15-19.
    [12]E. Makovenko, O. Husev, C. Roncero-Clemente, E. Romero-Cadaval and D. Vinnikov, "Modified DQ control approach for three-phase inverter," 2017 IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, 2017, pp. 1-3.
    [13]J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás and J. Rebollo, "A Survey of Wide Bandgap Power Semiconductor Devices," in IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2155-2163, May 2014.
    [14]J. L. Hudgins, G. S. Simin, E. Santi and M. A. Khan, "An assessment of wide bandgap semiconductors for power devices," in IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 907-914, May 2003.
    [15]G. Grandi, J. Loncarski, "Evaluation of Current Ripple Amplitude in Three-Phase PWM Voltage Source Inverters," Department of Electrical, Electronic and Information Engineering, 2013.
    [16]Magnetic Powder Core, Chang Sung Corporation, ver14, 2016.
    [17]An Introduction to GaN Enhancement-mode HEMTs, GaN systems, GN001 Application Note, April16, 2020.
    [18]Power MOSFET Basics: Understanding Gate Charge and using it to Assess Switching Performance, VISHAY SILICONIX, Device Application Note AN608A, Feb16, 2016.
    [19]Hyo-Jong Kim, Woo-Jin Cho, Jun-Hyung Kwon, and Jong-Wook Lee, "An X-Band 100W GaN HEMT Power Amplifier Using a Hybrid Switching Method for Fast Pulse Switching" in Progress In Electromagnetics Research B, Vol. 78, 1–14, 2017.
    [20]Kyung-Hwan Kim, Nam-Joo Park and Dong-Seok Hyun, "Advanced Synchronous Reference Frame Controller for Three-phase UPS Powering Unbalanced and Nonlinear Loads," 2005 IEEE 36th Power Electronics Specialists Conference, Recife, 2005, pp. 1699-1704.

    無法下載圖示 全文公開日期 2025/06/29 (校內網路)
    全文公開日期 2025/06/29 (校外網路)
    全文公開日期 2025/06/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE