簡易檢索 / 詳目顯示

研究生: 周俊維
Jun-Wei Zhou
論文名稱: 以氮化鎵磊晶於矽基板晶圓製作的共振腔發光二極體
Resonant cavity LEDs fabricated on a GaN-on-Si wafer
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 葉秉慧
Ping-Hui Yeh
李奎毅
Kuei-Yi Lee
徐世祥
Shih-Hsiang Hsu
宋峻宇
Jiun-Yu Sung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 101
中文關鍵詞: 氮化鎵共振腔發光二極體光電元件
外文關鍵詞: Gallium nitride, Resonant cavity light-emitting diode, Optoelectronic device
相關次數: 點閱:242下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於希望在未來可以將光電元件與電子元件積體化,而製作電子元件時大部分的基板都是矽,最近氮化鎵晶圓廠商開始商品化氮化鎵磊晶在矽基板(GaN-on-Si)。而在過去,本實驗室是以氮化鎵磊晶在藍寶石基板(GaN-on-Sapphire)去製作光電元件,所以此研究是本實驗室第一次使用矽基板生長的氮化鎵來製作共振腔發光二極體(Resonant cavity light-emitting diode, RCLED),上下反射鏡分別為介電質DBR和銀鏡,成功做出藍光RCLED,共振腔長約為4µm。
    本實驗也使用了本實驗室的專利矽擴散製程去做為電流阻擋層,將部分的p-GaN反轉為n-GaN,去侷限我們RCLED的發光孔徑,直徑為20µm。此外,以離子深蝕刻機由背面移除矽基板做出通孔(via hole),並鍍上銀鏡,發現使用電子束蒸鍍機來製作銀鏡的反射效果很好,在未鍍上銀鏡時,通入電流20mA下,光功率為0.16mW,鍍上銀鏡後,光功率為0.31mW,成長了至少80%。
    我們也比較了在鍍製介電質DBR的頻譜表現,在鍍製介電質DBR前,半高寬約為36奈米,在鍍製介電質DBR後,半高寬約為31奈米,雖然頻譜結果表現只有微幅縮窄,但如果能夠量測到垂直方向出光的頻譜,半高寬一定會更窄,頻譜的縮窄一定會更明顯。


    Most of the substrates used in the production of electronic components are silicon. In pursuit of optoelectronic and electronic components being integrated in the future, GaN epitaxy grown on silicon substrate was commercialized recently. In the past, our laboratory used GaN-on-sapphire wafers to fabricate optoelectronic components. For the first time in this laboratory, this study used a GaN-on-Si wafer to fabricate a resonant cavity light-emitting diode (RCLED). The top and bottom mirrors were dielectric distributed Bragg reflector (DBR) and silver mirror, respectively. The cavity length was approximately 4 µm.
    This work used our laboratory’s patent on silicon diffusion process to make a current blocking layer, part of the p-GaN being converted to n-GaN, that defined the luminous aperture of the RCLED of 20µm in diameter. Moreover, we selectively removed the backside silicon substrate to make via holes by using deep reactive ion etching, and deposited a silver mirror by using an electron beam evaporator. We found the reflection effect of the silver mirror was very good. Under the same driving current of 20mA, the optical power before and after mirror deposition was 0.16mW and 0.31mW, respectively. There was an increase of at least 80 percent.
    We also compared the emission spectrum of the RCLED before and after dielectric DBR deposition. Before depositing dielectric DBR, the full width at half maximum was about 36nm. After depositing dielectric DBR, it was about 31nm. The spectral width seemed to decrease slightly, but if we can measure the light output in the vertical direction, the full width at half maximum would be much narrower, the reduction in the spectral width can be more obvious.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 氮化鎵材料介紹 1.3 文獻回顧 第二章 共振腔發光二極體原理 2.1 共振腔發光二極體原理 2.2 銀鏡 2.2.1 反射率 2.2.2 穿透深度 2.3 分散式布拉格反射鏡 2.4 電流與光學侷限結構 2.5 矽擴散型電流侷限結構 第三章 儀器介紹 3.1 製程儀器介紹 3.1.1 旋轉塗佈機 3.1.2 光罩對準機 3.1.3 電漿增強式化學氣相沉積 3.1.4 感應耦合電漿式離子蝕刻機 3.1.5 射頻濺鍍機 3.1.6 電子束蒸鍍機 3.1.7 快速升溫退火爐 3.1.8 晶片研磨機 3.1.9 離子深蝕刻機(DRIE) 3.2 量測儀器介紹 3.2.1 I-V與L-I量測系統 3.2.2 表面輪廓儀 第四章 元件設計與製程 4.1元件設計 4.2 共振腔發光二極體元件製程 4.2.1 活化製程(Activation) 4.2.2 高台圖形製程(Mesa) 4.2.3 電流阻擋層製程(Current Blocking Layer, CBL) 4.2.4 二氧化矽絕緣層沉積 4.2.5 ITO透明導電層沉積 4.2.6 P型電極沉積 4.2.7 N型電極沉積 4.2.8 基板研磨 4.2.9 離子深蝕刻製程 4.2.10 銀鏡鍍製 4.2.11介電質DBR鍍製 第五章 實驗結果與討論 5.1矽基板磊晶生長的氮化鎵(GaN-on-Si)與藍寶石基板的氮化鎵(GaN-on-Sapphire)做出的LED的特性比較 5.2 RCLED元件在銀鏡鍍製前後的I-V與L-I量測結果 5.3 RCLED元件在銀鏡鍍製前後的發光光譜 5.4 RCLED元件在介電質DBR鍍製後的量測結果 第六章 結論與未來展望 6.1結論 6.2未來展望 參考文獻

    [1] S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Appl. Phys. Lett., Vol. 62, pp. 2390-2392 (1993).
    [2] E. Fred. Schubert, “Light Emitting Diode” Cambridge University Press, New York (2006).
    [3] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, “Optical bandgap energy of wurtzite InN” Appl. Phys. Lett., Vol. 81, No. 3, pp. 1246-1248 (2002).
    [4] G. Bhuiyan, K. Sugita, K. Kasashima, A. Hashimoto, A. Yamamoto, and V. Y. Davydov, “Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy,” Appl. Phys. Lett., Vol. 84, p. 452 (2004).
    [5] 牛振儀,「藉著電漿處理濕式蝕刻圖案化藍寶石基板提升氮化鎵發光二極體之效能」,國立交通大學碩士論文,第8頁 (2012)。
    [6] 方昭訓,「矽晶片基板製作氮化鎵基(GaN-based)LED回顧與展望」,TVS真空科技-技術報導(2010)。
    [7] Ray-Hua Horng et al., “Effect of Resonant Cavity in Wafer-Bonded Green InGaN LED With Dielectric and Silver Mirrors,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 18, NO. 3, FEBRUARY 1, 2006.
    [8] Pinghui S. Yeh, Meng-Chun Yu, Jia-Huan Lin, Ching-Chin Huang, Yen-Chao Liao, Da-Wei Lin, Jia-Rong Fan, and Hao-Chung Kuo, "GaN-Based Resonant-Cavity LEDs Featuring a Si-Diffusion-Defined Current Blocking Layer," IEEE Photonics Technology Letters, V. 26, n. 24, pp. 2488-2491, Dec. 2014.
    [9] Wei Cai et al., “GaN-on-Si resonant-cavity light-emitting diode incorporating top and bottom dielectric distributed Bragg reflectors,” Appl. Phys. Express 12 032004(2019).
    [10] RefractiveIndex.INFO-Refractive index database, https://refractiveindex.info/
    [11] S.O.Kasap “Optoelectronics and Photonics: Principles and Practices” (2nd Edition) Pearson Education, New Jersey (2001).
    [12] M. Ogura, W. Hsin, M. C. Wu, S. Wang, J. R. Whinnery, S. C. Wang, et al., "Surface‐emitting laser diode with vertical GaAs/GaAlAs quarter‐wavelength multilayers and lateral buried heterostructure," Applied Physics Letters, vol. 51, pp. 1655-1657, 1987.
    [13] J. M. Redwing, D. A. S. Loeber, N. G. Anderson, M. A. Tischler, and J. S. Flynn, "An optically pumped GaN–AlGaN vertical cavity surface emitting laser," Applied Physics Letters, vol. 69, pp. 1-3, 1996.
    [14] Y.-K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, et al., "A vertical cavity light emitting InGaN quantum well heterostructure," Applied Physics Letters, vol. 74, pp. 3441-3443, 1999.
    [15] J.-T. Chu, T.-C. Lu, M. You, B.-J. Su, C.-C. Kao, H.-C. Kuo, and S. C. Wang, "Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers," Applied Physics Letters, vol. 89, pp.121112-121112-3, 2006.
    [16] Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, "Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection," Applied Physics Express, vol. 1, p. 121102, 2008.
    [17] Takao Someya,Koichi Tachibana,Jungkeun Lee,Takeshi Kamiya,and Yasuhiko Arakawa, "Lasing Emission from an In0.1Ga0.9N Vertical Cavity Surface Emitting Laser," Japanese Journal of Applied Physics, vol. 37, pp. L1424-L1426, 1998.
    [18] T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, "Room Temperature Lasing at Blue Wavelengths in Gallium Nitride Microcavities," Science, vol. 285, pp. 1905-1906, 1999.
    [19] T.-C. Lu, C.-C. Kao,H.-C. Kuo, G.-S. Huang, and S.-C. Wang, "CW lasing of current injection blue GaN-based vertical cavity surface emitting laser," Applied Physics Letters, vol. 92, pp. 141102-141102-3, 2008.
    [20] T.-C. Lu, S.-W. Chen, T.-T. Wu, P.-M. Tu, C.-K. Chen, C.-H. Chen, et al., "Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature," Applied Physics Letters, vol. 97, pp. 071114-071114-3, 2010.
    [21] Masaru Kuramoto, Seiichiro Kobayashi, Takanobu Akagi, Komei Tazawa, Kazufumi Tanaka, Tatsuma Saito, and Tetsuya Takeuchi, "High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser," Applied Physics Express 11, 112101 (2018).
    [22] 盧廷昌、王興宗,半導體雷射技術,五南圖書,台北,2010。
    [23] Tatsushi Hamaguchi, Masayuki Tanaka, and Hiroshi Nakajima, “A review on the latest progress of visible GaN-based VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation,” Japanese Journal of Applied Physics 58, SC0806 (2019).
    [24] P. S. Yeh, C.-C. Chang, Y.-T. Chen, D.-W. Lin, J.-S. Liou, C. C. Wu, J. H. He, and H.-C. Kuo, "GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle," Applied Physics Letters, V. 109, n. 24, 241103 (2016).
    [25] 蕭宏,半導體製程技術導論-第三版,全華圖書有限公司,台北,2014。
    [26] 國立台灣大學光電所光電製程實驗室,光罩對準機MJB4,http://140.112.17.156/ntuee2008/DefaultPage2.aspx?instruid=7
    [27] SUSS_MA_BA8_Gen3_Original.pdf
    [28] 施敏,半導體元件物理與製作技術-第三版,國立交通大學出版社,新竹,2013。
    [29] 甯榮椿,「使用感應耦合電漿反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比研究SC1溶液對氮化鈦濕蝕刻速率研究」,國立清華大學材料科學與工程學系,2010。
    [30] 廖彥超,「有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響」,國立台灣科技大學電子工程所碩士學位論文,台北,2011。
    [31] Tegramin-20_chinese.pdf
    [32] 卓越一般訓練 Ver 1.0.pdf
    [33] DektakXT Stylus Profiling System Brochure-BRUKER.pdf
    [34] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Japanese Journal of Applied Physics, vol. 31, pp. L139-L142, 1992
    [35] 葉秉慧、余孟純、林家煥、黃景勤,“一種以矽擴散型電流阻擋層製作氮化鎵垂直共振腔面射型發光元件的方法”,中華民國專利發明第 I 563756 號, 自 2016 年 12 月 21 日至 2034 年 12 月 23 日。
    [36] 陳彥偉,「P型氮化鋁鎵之歐姆接觸研究」,國立交通大學電子物理所碩士學位論文,新竹,2006。
    [37] 本實驗室Selvy Uftovia Hepriyadi的實驗數據。
    [38] 本實驗室王張瀚的實驗數據。

    無法下載圖示 全文公開日期 2024/07/25 (校內網路)
    全文公開日期 2024/07/25 (校外網路)
    全文公開日期 2024/07/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE