簡易檢索 / 詳目顯示

研究生: 趙柏棠
Bo-Tang Zhao
論文名稱: 受不同研磨液溫度影響之單晶矽基板莫氏勢能結合能 計算方法建立及奈米切削之溫度場和有限差分法熱傳分析
Establishment of calculation method of bonding energy of Morse potential energy of single-crystal silicon substrate affected by different slurry temperatures and analysis on temperature field and finite-difference heat conduction of nanocutting
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 傅光華
Fu-Guang Hua
許覺良
Jue-Liang Xu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 216
中文關鍵詞: 比下壓能原子力顯微鏡單晶矽基板化學反應層莫氏勢能之結合能
外文關鍵詞: specific down force energy (SDFE), atomic force microscopy (AFM), single-crystal silicon substrate, bonding reaction layer, bonding energy of Morse potential energy
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract IV 誌謝 VIII 目錄 IX 圖目錄 XIII 表目錄 XIX 第一章 緒論 1 1.1前言 1 1.2研究動機及目的 3 1.3文獻回顧 5 1.3.1 奈米級切削加工實驗之相關文獻 5 1.3.2 分子力學之文獻 7 1.3.3 奈米級模擬切削及切削工件溫度場的文獻 10 1.4 本文架構 14 第二章 浸泡不同研磨液溫度之單晶矽基板之方法及比下壓能理論模型和實驗方法 18 2.1 調整不同研磨液溫度浸泡單晶矽基板之方法 18 2.2 浸泡不同研磨液溫度之單晶矽比下壓能設備模型和實驗方法 18 第三章 浸泡不同研磨液溫度之單晶矽基板的化學反應層內的比下壓能值及化學反應層厚度的計算模式及實驗方法 24 第四章 分子靜力學三維準穩態奈米級切削模式 28 4.1 分子靜力學之基本原理 28 4.1.1 分子作用力及勢能函數 29 4.1.2 截斷半徑法 31 4.1.3 物理參數 33 4.1.4 虎克 吉夫斯(Hooke-Jeeves)搜尋法 33 4.2 奈米級切削之切削力計算 35 第五章 受浸泡不同溫度研磨液影響的單晶矽基板的化學反應層內莫氏勢能結合能計算方法 40 第六章 等效應變及等效應力計算方法與被切削工件之提升溫度與有限差分法熱傳計算 45 6.1 等效應變及等效應力計算方法 45 6.1.1 等效應變之計算 45 6.1.2 等效應力之計算 48 6.2 被切削工件之提升溫度計算 50 6.2.1 塑性變形熱之提升溫度計算方法 51 6.2.2 摩擦熱之提升溫度計算方法 51 6.2.3 有限差分熱傳方程式 53 6.2.4 內部控制體積 54 6.2.5 邊界控制體積 55 6.2.6 不同溫度水熱傳條件設定 58 6.2.7 不同溫度水熱對流材料的假設與計算 59 第七章 模擬模型的建構 66 7.1 等應變四面體(constant strain tetrahedron,CST)元素 66 7.2 原子編號的原理 80 第八章 結果與討論 81 8.1 未浸泡研磨液之單晶矽基板比下壓能值 81 8.2 浸泡不同研磨液溫度之單晶矽基板比下壓能值 81 8.3 浸泡不同研磨液溫度之單晶矽基板化學反應層厚度之實驗及計算結果 84 8.4 受不同研磨液溫度影響之單晶矽基板莫氏勢能結合能值之運算結果及探討 96 8.5 受浸泡不同研磨液溫度影響之單晶矽基板以固定加工深度方式切削之分子靜力學三維準穩態奈米級切削模擬模式與比下壓能法計算切削力與下壓力 130 8.6 分子靜力學三維準穩態奈米級切削模擬模式模擬切削受浸泡不同研磨液溫度影響之單晶矽基板之等效應變與應力結果與分析 133 8.7 分子靜力學三維準穩態奈米級切削模擬模式模擬切削浸泡不同研磨液溫度單晶矽之切削溫度場計算結果與分析 139 8.8 分子靜力學三維準穩態奈米級切削模擬模式模擬切削浸泡不同研磨液溫度單晶矽基板經空氣及水熱傳結果及分析 155 8.8.1 未浸泡研磨液單晶矽基板經有限差分法使用空氣熱傳之溫度結果 156 8.8.2 受23℃研磨液影響之單晶矽基板經有限差分法使用水熱傳之溫度結果 161 8.8.3 受30℃研磨液影響之單晶矽基板經有限差分法使用水熱傳之溫度結果 165 8.8.4 受40℃研磨液影響之單晶矽基板經有限差分法使用水熱傳之溫度結果 169 8.8.5 受50℃研磨液影響之單晶矽基板經有限差分法使用水熱傳之結果 173 8.8.6 不同結合能值對於不同溫度水熱傳後單晶矽熱傳影響分析 177 第九章 結論 180 參考文獻 182

    [1]. Cheng, M. S., Ho, J. S., Tan, C. H., Wong J. P., Ng L. C., and Toh, C. S., “Development of an electrochemical membrane-based nanobiosensor for ultrasensitive detection of dengue virus”, Analytica Chimica Acta, Vol.725, pp.74-80 (2012).
    [2]. Wang, Z., Wang, D., Jiao, N., Tung, S., and Dong, Z., “A Nanochannel System Fabricated by MEMS Microfabrication and Atomic Force Microscopy”, Nano/Micro Engineered and Molecular Systems, pp.372-376 (2011).
    [3]. Salieb-Beugelaar, G. B., Teapal, J., van Nieuwkasteele, J., Wijnperle, D., Tegenfeldt, J. O., Lisdat, F., van den Berg, A., Eijkel, and J. C. T., “Field-Dependent DNA Mobility in 20nm High Nanoslits”, Nano Letters, Vol.8, No.7, pp.1785-1790 (2008).
    [4]. Fologea, D., Gershow, M., Ledden, B., McNabb, D. S., Golovchenko, J. A., and Li, J., “Detecting Single Stranded DNA with a Solid State Nanopore”, Nano Letters, Vol.5, No.10, pp.1905-1909 (2005).
    [5]. Maleki, T., Mohammadi, S., and Ziaie, B., “A nanofluidic channel with embedded transverse nanoelectrodes”, Nanotechnology, Vol.20, No.10 (2009).
    [6]. Lübben, J. F. and D. Johannsmann, “Nanoscale High-frequency Contact Mechanics Using an AFM Tip and a Quartz Crystal Resonator”, Langmuir,Vol.20, No.9, pp. 3698-3703 (2004).
    [7]. Fang, T. H., Weng, C. I., and Chang, J. G., “Machining Characterization of Nano-lithography Process by Using Atomic Force Microscopy”, Nanotechnology, Vol.11, No.5, pp.181-187 (2000).
    [8]. Z.Q. Wang, Jiaoa, N. D., Tungc, S., and Donga, Z. L., “Atomic force microscopy-based repeated machining theory for nanochannels on silicon oxide surfaces”, Applied Surface Science, Vol.257, pp.3627-3631 (2011).
    [9]. Tseng, A.A., “A Comparison Study of Scratch and Wear Properties Using Atomic Force Microscopy”, Applied Surface Science, Vol. 256, No.13, pp. 4246- 4252 (2010).
    [10]. 林建廷,「應用比下壓能及改變下壓力之單晶矽奈米流道凹槽加工模擬模式建立與實驗研究」,碩士論文,國立台灣科技大學大學機械工程研究所,民國102年
    [11]. Irving, J. H. and Kirkwood, J. G., “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics”, J. Chem. Phys., Vol.19, Issue 9, pp. 817-829 (1950).
    [12]. Kwon, Y. W. and Jung, S. H., “Atomic model and coupling with continuum model for static equilibrium problems,” Computers and Structures, Computational Structures Technology, Vol.82, Issues 23-26, pp. 1993-2000 (2004).
    [13]. IGOR Ye. Telitchev, and OLEG Vinogradov, “A method for quasi-static analysis of topologically variable lattice structures,” International Journal of Computational Methods, Vol.3, Issue 1, pp. 71-81 (2006).
    [14]. Jeng, Y. R., and Tan, C. M., “Study of Nanoindentation Using FEM Atomic Model,” Journal of Tribology, Vol.126, Issue 4, pp. 767-774 (2004).
    [15]. Hu, S. Y., Ludwig, M., Kizler, P., and Schmauder, S., “Atomistic simulations of deformation and fracture of α-Fe,” Modelling Simul. Mater. Sci. Eng., Vol.6, No.5, pp. 567–586 (1998).
    [16]. Saraev, D., Kizler, P., and Schmauder, S., “The influence of Frenkel defects on the deformation and fracture of alpha-Fe single crystals,” Modelling Simul. Mater. Sci., Eng., Vol.7, No.6, pp.1013–1023 (1999).
    [17]. 陳雨樵,「以分子模擬方法研究奈米線之機械性質」,碩士論文,國立中正大學機械工程研究所,民國九十五年。
    [18]. James, S. and Sundaram, M. M., “A molecular dynamics study of the effect of impact velocity, particle size and angle of impact of abrasive grain in the Vibration Assisted Nano Impact-machining by Loose Abrasives”, Wear,Vol.303, Issue 1-2, pp. 510-518 (2013).
    [19]. Lin, Z. C. and Huang, wei-fu., “Simulation of two dimensional Nanoscale cutting copper by Quasi-steady molecular statics Method , Applied Method , Applied Mechanics and Materials, Vol.300-301, pp.265-268 (2013) (EI).
    [20]. 林榮慶,簡辰學, 林孟樺,「具空孔缺陷之單晶矽材料之三維分子靜力學奈米級正交切削研究」, SME,論文編號:B9,p.20 (2010).
    [21]. Shimada, S., “Molecular Dynamics Analysis as Compared with Experimental Results of Micromachining”, CIRP Annals, Vol.41, Issue 1, pp.117-120 (1990).
    [22]. Childs, T. H. C. and Maewaka, K., “Computer-aided Simulation and Experimental Studies of Chip Flow and Tool Wear in the Turning of Flow Alloy Steels by Cemented Carbide Tools” ,Wear, Vol.139, Issue2, pp. 235-250 (1990).
    [23]. Belak, J. and Stowers, I. F., “A Molecular Dynamics Model of the Orthogonal Cutting Process”, Proc. Am. Soc., Precision Eng., pp.76-79 (1990).
    [24]. Kim, J. D. and Moon, C. H., “A study on microcutting for the configuration of tools using molecular dynamics”, Journal of Materials Processing Technology, Vol.59, No.4, pp. 309-314 (1995).
    [25]. Fang, F. Z., Wu, H., Zhou, W., and Hu, X. T., “A study on mechanism of nano-cutting single crystal silicon”, Journal of Materials Processing Technology, Vol.184, No.1-3, pp. 407-410 (2007).
    [26]. Pei, Q. X., Lu, C., Fang, F. Z., and Wu, H., “Nanometric cutting of copper: A molecular dynamics study”, Computational Materials Science, Vol.37, No.4, pp.434-441 (2006).
    [27]. Inamura, T. and Takezawa, N., “Cutting Experiments in a Computer Using Atomic Models of a Copper Crystal and a Diamond Tool”, Int. J. Japan Soc. Prec. Eng., Vol.25, No. 4, pp. 259-266 (1991).
    [28]. Inamura, T. and Takezawa, N., “Atomic-Scale Cutting in a Computer Using Crystal Models of Copper and Diamond”, CIRP Annals, Vol.41, No. 1, pp. 121-124 (1992).
    [29]. Inamura, T., Takezawa, N., and, Kumaki, Y., “Mechanics and energy dissipation in nanoscale cutting”, CIRP Annals, Vol.42, No.1, pp.79-82 (1993).
    [30]. Cai, M. B., Li, X. P., and Rahman, M., “Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation”, International Journal of Machine Tool & Manufacture, Vol.47, Issue 1, pp.75–80 (2007).
    [31]. Cai, M. B., Li, X. P., and Rahman, M., “Characteristics of dynamic hard particles in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear”, Wear, Vol.263, Issue7-12, pp.1459-1466 (2007).
    [32]. Cai, M. B., Li, X. P., and Rahman, M., “Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation”, Journal of Materials Processing Technology, Vol.192-193, No.1, pp. 607-612 (2007).
    [33]. Tanaka, H. and Shimada, S., “Requirements for Ductile-mode Machining Based on Deformation Analysis of Mono-crystalline Silicon by Molecular Dynamics Simulation”, CIRP Annals, Vol.56, Issue 1, pp.53-56 (2007).
    [34]. Tang, Q. H., “MD simulation of dislocation mobility during cutting with diamond tip on silicon”, Materials Science in Semiconductor Processing, Vol.10, Issue 6, pp.270-275 (2007).
    [35]. Shimada, S., “Molecular dynamics analysis of nanometric cutting process”, CIRP Annals, Vol.29, No.4, pp.283-289 (1995).
    [36]. Goel, S., Luo, X., Reuben, R. L., and Pen, H., “Influence of temperature and crystal orientation on tool wear during single point diamond turning of silicon”, Wear, Vol.284-285, No.25, pp.65-72 (2012).
    [37]. Goel, S., Luo, X., Reuben, R. L., and Agrawal, A., “Diamond machining of silicon: A review of advances in molecular dynamics simulation”, Vol.88, pp.131-164 (2015).
    [38]. Cheng, K., Luo, X., Ward, R., and Holt, R., “Modeling and simulation of the tool wear in nanometric cutting” Vol 255, pp.1427-1432 (2003).
    [39]. Lin, Z. C. and Huang, J. C., “A nano-orthogonal Cutting Model Based on a Modified Molecular Dynamics Technique”, Nanotechnology, Vol.15, No.5, pp.510-519 (2004).
    [40]. Rahman, A., “Correlations in motions of atoms in liquid argon”, Physical Review, Vol.136, No.2A, pp.405-411 (1964).
    [41]. Lin, Z. C. and Hsu, Y. C., “Simalation Analysis and Experiment Study of Nanocutting with AFM Probe on the Surface of Sapphire Substrate by Using Three Dimensional Quasi-Steady Molecular statics Nanocutting Madel”, CMC: Computers, Materials, & Continua, Vol.25, No.1, pp.75-106 (2011).
    [42]. Girifalco, L. A. and Weizer, V. G., “Application of the Morse Potential Function to Cubic Metals”, Physics review, Vol.114, pp. 687-690 (1959).
    [43]. Lin, Z. C., Pan, W. C. and Lo, S. P., “A Study of Orthogonal Cutting with Tool Flank Wear and Sticking Behavior on the Chip-Tool Interface”, Journal of Materials Processing Technology, Vol.52, No.2-4, pp.524-538 (1995).
    [44]. Huebner, K. H. and Thornton, E. A. The Finite Element Method for Engineers, John Wiley and Sons, New York, pp.284-295 (1995)
    [45]. Lin, Z. C. and Hsu, Y. C., “Analysis on Simulation of Quasi-steady Molecular Statics Nanocutting Model and Calculation of Temperature Rise During Orthogonal Cutting of Single-crystal Copper”, CMC: Computers, Materials, & Continua, Vol.27, No.2, pp. 143-178 (2012).
    [46]. Rentsch, R. and Inasaki, I., “Effects of Fluids on the Surface Generation in Material Removal Processes-Molecular Dynamics Simulation”, CIRP Annals, Vol.55, Issue 1, pp. 601-604 (2006).
    [47]. Lin, Z. C. and Ying-Chih Hsu, 2012, "A Calculating Method for the Fewest Cutting Passes on Sapphire Substrate at a Certain Depth Using Specific Down Force Energy with an AFM Probe", Journal of Materials Processing Tech., Vol. 212, Issue 11, pp. 2321-2331 (SCI
    [48]. Lin, Z. C., C, T. Lin. and Y. C. Hsu, 2015,’’ Theoretical Model of Calculating Cutting. Force and Down Force for Nanocutting of V-Shaped Groove on Single-Crystal Silicon, “ Journal of Chinese Society of Mechanical Engineering., Vol36, No.5, pp. 363~374(SCI).
    [49]. Reklaitis, G. V., Engineering Optimization: Methods and Application, Wiley; 2 Edition, USA (2006).
    [50]. Aly, M. F., Ng, E., Veldhuis, S. C., and Elbestawi, M. A., “Prediction of Cutting Forces in the Micro-machining of Silicon Using a Hybrid Molecular Dynamic-finite Element Analysis Force Model”, International Journal of Machine Tools and Manufacture, Vol.46, Issue 14, pp.1727–1739 (2006).
    [51]. 莊華晟,「應用偏移加工法多層切削單晶矽梯形凹槽之切削力及溫度分佈與熱傳模擬分析研究」,碩士論文,國立台灣科技大學機械工程研究所,2016。
    [52]. Yunus A. Cengel and Afshin J. Ghajar., Heat and Mass Transfer: Fundamentals & Applications, 4e, The McGraw-Hill Companies, Inc. (2010).
    [53]. http://help.solidworks.com/2011/Chinese/SolidWorks/cworks/LegacyHelp/Simulation/AnalysisBackground/ThermalAnalysis/Convection_Topics/Convection_Heat_Coefficient.htm

    無法下載圖示 全文公開日期 2024/08/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE