簡易檢索 / 詳目顯示

研究生: 曾正一
Jeng-Yi Tzeng
論文名稱: 非接觸式原子力顯微鏡探針系統動態分析與控制
Dynamical Analysis and Control of a Non-contact Atomic Force Microscopy Probe System
指導教授: 郭中豐
Chung-feng Kuo
口試委員: 江茂雄
none
張嘉德
none
黃昌群
none
曾安培
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 97
中文關鍵詞: 漢米頓原理模態疊加法Martin理論專家比例-微分-積分控制器
外文關鍵詞: Hamilton’s principle, Mode summation method, Martin’s theorem, Expert PID controller
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文對原子力顯微鏡探針作動態分析與控制系統設計,期望原子力顯微鏡探針達到精確且快速定位的目標。首先透過動力學得到系統的動能和位能,依據漢米頓原理(Hamilton’s principle)求得到系統的運動方程式及相關邊界條件,經由拉普拉斯轉換(Laplace transform)得到系統的開迴路轉移函數,具有無窮多個極點和零點,利用模態疊加法取得精確度足以描述系統之模態數,以根軌跡法和Martin理論分析系統穩定度並進行控制器之設計。最後對所設計出來的比例微分控制器、相位領先補償器和專家比例-微分-積分控制器進行時間響應模擬,其中專家比例-微分-積分控制器能減少系統的安定時間且能有效抑制系統振盪是最為理想與實用的控制器。


    The objective of this thesis is to discuss the dynamic analysis and controlling system design for atomic force microscopy, with the aim to enhance the system stability and achieve accuracy and precision in positioning. First, the kinetic and potential energy of system are obtained based on the theory of dynamics. The dynamic equations and related boundary conditions of atomic force microscopy are derived from Hamilton’s principle. Then, the open-loop transfer function is derived from the Laplace transform. Since the transfer function has an infinite number of poles and zeros, mode summation method can be used to obtain modes with precision that is sufficient to describe the system. The system stabilization and controller design are analyzed by using the root-locus method and Martin’s theorem. Finally, time response simulation is conducted on the proportional-derivative (PD) controller, phase-lead compensator, and expert PID controller developed by this study. Among which, the expert PID controller is proved to improve the effect of the vibration suppression and reduce the settling time. Therefore, it is an ideal and practical controller to solve the problem of vibration suppressions for high-speed precision positioning.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖引索 VII 表索引 X 第1章 緒論 1 1.1 前言 1 1.2 原子力顯微鏡種類 3 1.2.1 接觸式(Contact mode) 4 1.2.2 非接觸式(Non-contact mode) 5 1.2.3 輕敲式(Tapping mode) 6 1.3 研究動機與目的 7 1.4 文獻回顧 8 1.5 研究流程 13 1.6 論文大綱 14 第2章 原子力顯微鏡探針數學模式推導與動態分析 15 2.1 原子力顯微鏡探針模型建立 16 2.2 原子力顯微鏡探針動態方程式推導 18 2.3 交互作用力 20 2.4 自然頻率和特徵函數 21 2.5 轉移函數 28 2.6 模態疊加法 34 第3章 系統穩定度分析和控制器設計 39 3.1 系統穩定度分析 39 3.1.1 根軌跡分析法 40 3.1.2 Martin 定理 41 3.2 比例-微分-積分控制理論 46 3.3 控制器之設計 47 3.3.1 比例控制器設計 48 3.3.2 比例微分控制器設計 50 3.3.3 相位領先補償器設計 55 3.4 專家比例-微分-積分控制器 62 3.4.1 專家系統概述 62 3.4.2 專家控制 63 3.4.3 專家比例-微分-積分控制器的設計 65 第4章 系統模擬結果分析與討論 70 4.1 性能指標分析 70 4.2 以第一模態當主極點性能參數設計 72 4.3 模擬結果 75 4.3.1 加入比例控制器之模擬響應圖 75 4.3.2 加入控制器之模擬響應圖(N=1) 78 4.3.3 加入控制器之模擬響應圖(N=2) 81 4.3.4 加入控制器之模擬響應圖(N=10) 83 4.3.5 加入專家比例-微分-積分控制器之模擬響應圖 86 4.4 模擬結果討論 88 第5章 結論與未來研究方向 89 5.1 結論 89 5.2 未來研究方向及建議 90 參考文獻 92 作者簡介 97

    [1] G. Binning, H. Rohrer, C. Gerber and E. Weibel, “Surface Studies by Scanning Tunneling Microscopy,” Physical Review Letters, Vol.49, pp. 57-61, 1982.
    [2] G. Binning, C. F. Quate and C. Gerber, “Atomic Force Microscope,” Physical Review Letters, Vol.56, pp. 930-933, 1986.
    [3] W. L. Nelson, “End-Point Sensing and Load-Adaptive Control of a Flexible Robot Arm,” IEEE Proceeding of 24th Conference on Decision and Control, pp. 1410-1415, 1985.
    [4] W. T. Thomson and M. D. Dahleh, “Theory of Vibration with Applications,” 5th Ed., Prentice Hall, 1998.
    [5] C. F. Kuo and C. C. Huang, “Modeling and Simulation of Nonlinear Dynamic in a Flexible Robot Arm,” Active Control of Noise and Vibration ASME, Vol. 38, pp. 149-156, 1992.
    [6] G. G. Hastings and W. J. Book, “Verification of a Linear Dynamic Model for Flexible Robotic Manipulators,” IEEE International Conference on Robotics and Automation, pp. 1024-1029, 1986.
    [7] L. Meirovitch, “Analytical Methods in Vibrations,” pp. 42-46, 1967.
    [8] S. B. Choi, B. S. Thompson and M. V. Gandhi, “Modeling and Control of a Graphite-Epoxy Composite Arm,” IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1450-1455, 1990.
    [9] P. B. Usoro, S. S. Mahil and R. Nadir, “A Finite Element/Langrange Approach to Modeling Lightweight Flexible Manipulators,” ASME Journal of Dynamic Systems, Measurement and Control, Vol. 108, pp. 198-205, 1986.
    [10] S. S. Ge, T. H. Lee and G. Zhu, “Tip Tracking Control of a Flexible Manipulator Using PD Type Control,” IEEE International Conference on Control Applications, pp. 309-313, 1996.
    [11] R. E. Skelton, P. Hughes and H. Hablani, “Order Reduction for Models of Space Structures Using Model Cost Analysis,” Journal of Guidance and Control, Vol. 5, pp. 351-357, 1982.
    [12] W. B. Gevarter, “Basic Relations for Control of Flexible Vehicles,” AIAA Journal, Vol.8, pp. 666-672, 1970.
    [13] L. Merovitch and H. Baruh, “Control of Self-Adjoint Distributed Parameter System,” Journal of Guidance, Control and Dynamic, Vol. 5, pp. 60-66, 1982.
    [14] M. J. Balas, “Feedback Control Systems,” IEEE Transactions on Automatic Control, Vol. 23, No. 4, pp. 673-679, 1978.
    [15] W. T. Qian and C. C. H. Ma, “Experiments on a Flexible One-Link Manipulator,” IEEE Pacific Rim Conference on Communications, Computer and Signal Processing, pp. 262-265, 1991.
    [16] P. A. A. Laura, J. L. Pombo and E. A. Susemihl, “A Note on the Vibration of a Clamped-Free Beam with a Mass at the Free End,” Journal of Sound and Vibration, Vol. 37, No. 2, pp. 161-168, 1974.
    [17] M. Gurgoze, “On the Approximate Determination of the Fundamental Frequency of a Restrained Cantilever Beam Carrying a Tip Heavy Body,” Journal of Sound and Vibration, Vol. 105, No. 3, pp. 443-449, 1986.
    [18] U. Rabe, K. Janser and W. Amold, “Vibrations of Free and Surface-Coupled Force Microscope Cantilevers: Theory and Experiment,” American Institute of Physics, Vol. 67, pp. 3281-3293, 1996.
    [19] P. A. A. Laura and R. H. Gutierrez, “Vibration of an Elastically Restrained Cantilever Beam of Varying Cross-Section with Tip Mass of Finite Length,” Journal of Sound and Vibration, Vol. 108, No. 1, pp. 123-131, 1986.
    [20] M. Gurgoze, “On the Eigenfrequencies of a Cantilever Beam with Attached Tip and a Spring-Mass System,” Journal of Sound and Vibration, Vol. 190, No. 2, pp. 149-162, 1996.
    [21] A. Uscilowska and J. A. Kolodziej, “Free Vibration of Immersed Column Carrying a Tip Mass,” Journal of Sound and Vibration, Vol. 216, No. 1, pp. 147-157, 1998.
    [22] S. Weigert, M. Dreier and M. Hegner, “Fequency Shifts of Cantilevers Vibrating in Various Media,” Appl. Phys. Letter., Vol. 69, pp. 2834-2836, 1996.
    [23] K. N. Chen and J. C. Huang, “Analysis of Tip Effects on the Dynamic Characteristics of V-Shaped Atomic Force Microscope Probes,” Proceedings of the 2005 International Conference on MEMS, NANO and Smart Systems, pp. 65-68, 2005.
    [24] J. A. Turner, S. U. Rabe and W. Arnod, “High-Frequency Response of Atomic Force Microscope Cantilevers,” J. Appl. Phys. 82, pp. 966-979, 1997.
    [25] E. Pupas, G. Gremaud, A. Kulik and J. L. Loubet, “High-Frequency Mechanical Spectroscopy with an Atomic Force Microscope,” Rev. Sci. Instrum, 72, pp. 3891-3897, 2001.
    [26] N. Jalili and D. Dawson, “A Fresh Insight Into the Microcantilever Sample Interaction Problem in Non-Contact Atomic Force Microscopy,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 126, pp. 327-335, 2004.
    [27] J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic Controllers,” Trans. ASME, Vol. 64, pp. 759-768, 1942.
    [28] K. J. Astrom and E. K. Årzen, “Expert Control,” Automatica, Vol. 22, pp. 277-286, 1986.
    [29] E. K. Årzen, “An Architecture for Expert Control System Based Feedback Control,” Automatica, Vol. 25, pp. 813-827, 1989.
    [30] R. Devanathan, C. C. Keong, L. T. Kin and C. Y. Soon, “An Expert PID Controller,” IEEE International Workshop on Artificial Intelligence for Industrial Applications, pp. 404-408, 1988.
    [31] X. Jinbang, Z. Jin, L. Ling and W. Shuyun, “Expert PID Controller for AC/DC Converter,” IEEE Proceedings of the 5th World Congress on Integlligent Control and Automation, June 15-19, pp. 5586-5590, 2004.
    [32] R. F. Fung and S. C. Huang, “Dynamic Modeling and Vibration Analysis of the Atomic Force Microscope,” ASME, Journal of Vibration and Acoustics, Vol. 123, pp. 502-509, 2001.
    [33] H. Holscher, U. D. Schwarz and R. Wiesendanger, “Calculation of the Frequency Shift in Dynamic Force Microscopy,” Applied Surface Science, Vol. 140, pp. 344-351, 1999.
    [34] B. Wie and A. E. Bryson, “Modeling and Control of Flexible Space Structures,” In Proceedings of 3rd VPI and SU/AIAA Symposium on the Dynamics and Control of Large Flexible Spacecraft, pp. 153-174, 1981.
    [35] S. Cetlinkunt and W. L. Yu, “Closed-Loop Behavior of a Feedback-Controlled Flexible Arm: a Comparative Study,” Int. J. Robotics Research, Vol. 10, No. 3, pp. 263-275, 1991.
    [36] G. D. Martin, “On the Control of Flexible Mechanical System,” Ph.D. Dissertation, Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, SUDARR 511, 1978.
    [37] 李政霖, “原子力顯微鏡探針控制系統之設計,” 國立台灣科技大學高分子工程研究所碩士論文, 2005.
    [38] 吳駖, “MATLAB 6.X 與基礎自動控制,” 文魁資訊, 2002.
    [39] 劉金琨, “智能控制,” 電子工業出版社, 2006.
    [40] 李宜達, “控制系統設計與模擬,” 全華科技, 2003.
    [41] 張智星, “MATLAB程式設計與應用,” 清蔚科技, 2000.
    [42] 陳嘉煒譯, “結構動力學,” 科技圖書, 1991.
    [43] 鄒開其等譯, “模糊系統與專家系統,” 儒林圖書, 1993.

    無法下載圖示 全文公開日期 2010/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE