簡易檢索 / 詳目顯示

研究生: 黎佳惠
Chia-Hui Li
論文名稱: 界面氧化鋁對Al/TaOxNy/TaN及TaN/TaOxNy/Al元件之雙極式電阻切換影響
Effect of Interfacial Aluminum Oxide on Bipolar Resistive Switching of the Al/TaOxNy/TaN and TaN/TaOxNy/Al Devices
指導教授: 周賢鎧
Shyankay Jou
口試委員: 胡毅
Hu Yi
黃柏仁
Bohr-Ran Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 158
中文關鍵詞: 微波電漿氧化反應式濺鍍界面氧化層AlOz氧空缺導電燈絲電阻式記憶體
外文關鍵詞: microwave plasma oxidation, reactive sputtering, interfacial layer of AlOz, conduction filaments, RRAM
相關次數: 點閱:306下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以積體電路相匹配之Al、TaN作為上、下電極,以取代昂貴之白金(Pt)作為電極,並採用微波電漿氧化或反應式濺鍍製備中間電阻層TaOxNy,製成Al/TaOxNy/TaN、TaN/TaOxNy/Al之MIM結構之電阻式記憶體,比較兩種元件之電性掃描特性,且探討Al與TaOxNy界面處之界面氧化層AlOz對元件之影響。
    當以微波電漿氧化或以反應式濺鍍製備中間層TaOxNy,並製作成Al/TaOxNy/TaN元件時,於循環掃描時高低電阻切換較不穩定,且不能長時間地作高低電阻切換,而高低電阻值會隨掃描時間增加而增加之趨勢,並直到元件產生永久絕緣現象而損壞。當以反應式濺鍍製備中間層TaOxNy,並製作成TaN/TaOxNy/Al元件時,元件於循環掃描時高低電阻切換穩定,且可循環操作高達1000次,而高低電阻值比值約2.5倍。
    在TaN/TaOxNy/Al元件之導電機制方面,高電阻態之電性分析結果認為在低電壓時為Ohmic conduction,高電壓時為Poole-Frenkel emission;低電阻態則為Ohmic conduction。在電極面積效應方面,TaN/TaOxNy/Al元件之HRS電阻值會隨著面積增大而有下降之趨勢,LRS電阻值則維持不變,推測元件之導電方式是以導電燈絲作為主要導電機制。而於升溫電性量測分析,TaN/TaOxNy/Al元件之電阻值會隨著溫度上升而下降,可得知其導電燈絲為氧空缺燈絲作為主要載子傳遞路徑。


    In this study, we demonstrate the effect of interfacial aluminum oxide (AlOz) layer near the Al-TaOxNy interface and compare reversible switching behaviors of the Al/TaOxNy/TaN and TaN/TaOxNy/Al resistance random access memory (RRAM) devices. The TaN and Al films which are compatible with the integrated circuits technology were prepared by sputter deposition as the electrode layers to replace expensive Pt electrode, and the tantalum oxynitride (TaOxNy) film was prepared by reactive sputtering or microwave plasma oxidation of the TaN films as the insulating layer.
    The resistance swiching operation was unstable for the Al/TaOxNy/TaN devices whose TaOxNy films were prepared by reactive sputtering or microwave plasma oxidation, and the resistance of HRS and LRS increased with increased resistance switching cycles. In comparison, the switching behavior of TaN/TaOxNy/Al device whose TaOxNy film was prepared by reactive sputtering exhibited good stability. The resistance ratio of RHRS/RLRS measured at -0.2 V of the TaN/TaOxNy/Al device was about 2.5, and the numbers of resistance switching could be up to 1000 cycles at room temperature.
    On the mechanism analysis of TaN/TaOxNy/Al device, HRS were the Ohmic conduction at the low operation voltages and the Poole-Frenkel emission at high operation voltages, respectively, and LRS was the Ohmic conduction. To elucidate the conduction mechanism, we carried out electrical measurements of the RRAM with different cell areas and at various temperatures. The TaN/TaOxNy/Al device in LRS had constant resistance with increased cell’s area and decreased resistance with increased temperature. It suggests that the electron transport is probably attributed to oxygen vacancies in conduction filaments.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 X 表目錄 XVII 第1章 前言 1 1.1 介紹 1 1.2 研究動機 2 第2章 文獻回顧 3 2.1 記憶體簡介 3 2.1.1 鐵電式記憶體(Ferroelectric Random Access Memory, FeRAM) 2 2.1.2 磁阻式記憶體(Magnetoresistive Random Access Memory, MRAM) 2 2.1.3 相變化式記憶體(Phase-Change Random Access Memory, PRAM) 2 2.1.4 電阻式記憶體(Resistive Random Access Memory, RRAM) 3 2.1.4a 單極性電阻切換 6 2.1.4b 雙極性電阻切換 6 2.2 電阻式記憶體之電阻切換機構 7 2.2.1 導電燈絲機構(Filamentary conducting path) 7 2.2.2 離子遷徙機構(Ionic migration) 10 2.2.3 界面型導電機構(Interface-type conducting path) 11 2.3 漏電流導電機制 13 2.3.1 蕭特基發射(Schottky emission) 13 2.3.2 歐姆接觸(Ohmic contact) 15 2.3.3 傅勒-諾德翰穿隧(Fowler-Nordheim tunneling, FNT) 15 2.3.4 空間電荷限制傳導(Space-charge-limited conduction) 16 2.3.5 普爾-法蘭克發射(Poole-Frenkel emission) 19 2.4 TaON、TaOx及Ta2O5之電阻切換相關研究 21 2.4.1 TaON作為電阻層之研究 21 2.4.2 TaOx作為電阻層之研究 23 2.4.3 Ta2O5作為固態電解質型電阻層之研究 28 2.4.4 Ta2O5-x-TaO2-x作為電阻層之研究 30 2.5 電極與絕緣層之間界面氧化物膜層對電阻切換之影響 32 2.6 AlxOy、Al2O3作為電阻層之研究 38 第3章 實驗方法與步驟 41 3.1 電阻式記憶體元件之製備 41 3.1.1 實驗耗材與藥品規格 41 3.1.2 實驗流程 42 3.1.3 基材簡介及清洗製程 43 3.1.4 元件製備 44 3.2 實驗儀器與裝置 47 3.2.1 實驗儀器簡表 47 3.2.2 磁控式濺鍍系統 (Magnetic Sputtering) 47 3.2.3 微波電漿氧化系統 (Microwave Plasma Oxidation) 49 3.3 材料分析與鑑定之儀器 50 3.3.1 材料分析儀器簡表 50 3.3.2 表面輪廓儀 (Surface Profiler, α-step) 51 3.3.3 X-ray繞射分析儀(X-ray Diffractometer, XRD) 51 3.3.4 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy, FESEM) 52 3.3.5 高解析度場發射穿透式電子顯微鏡(Field Emission Transmission Electron Microscopy, FETEM) 53 3.3.6 場發射雙束型聚焦離子束顯微鏡(Dual Beam FIB) 54 3.3.7 X射線光電子能譜儀(X-ray Photoelectron Spectrum, XPS) 54 3.3.8 半導體電性量測儀 56 第4章 結果與討論 58 4.1 以微波電漿氧化製備中間電阻層之Al/TaOxNy/TaN MIM元件之材料特性分析 58 4.1.1 電極之電阻係數及XRD分析 58 4.1.2 界面電阻層之成分分析 62 4.1.3 薄膜微觀結構分析 71 4.2 以微波電漿氧化製備中間電阻層之Al/TaOxNy/TaN MIM元件之電性量測與分析 76 4.2.1 交叉隔條電極組成之元件之I-V分析 76 4.2.2 點狀電極組成之元件之I-V分析 79 4.2.3 電阻切換機構分析 81 4.3 以反應式濺鍍製備TaOxNy中間電阻層之MIM元件之材料特性分析 84 4.3.1 電極與中間電阻層TaOxNy之電阻係數及XRD分析 84 4.3.2 Al/TaOxNy/TaN 87 4.3.2a 界面電阻層之成分分析 87 4.3.2b 薄膜微觀結構分析 96 4.3.3 TaN/TaOxNy/Al 101 4.3.3a 界面電阻層之成分分析 101 4.3.3b 薄膜微觀結構分析 110 4.4 以反應式濺鍍製備TaOxNy中間電阻層之MIM元件之電性量測與分析 113 4.4.1 點狀電極組成之元件 113 4.4.1a Al/TaOxNy/TaN 113 4.4.1b TaN/TaOxNy/Al 115 4.4.2 電阻切換機構分析 123 4.4.2a Al/TaOxNy/TaN 123 4.4.2b TaN/TaOxNy/Al 126 4.4.3 Al/TaOxNy/TaN與TaN/TaOxNy/Al元件之比較 129 第5章 結論與未來展望 131 5.1 結論 131 5.2 未來展望 132 參考文獻 133 附錄 143 JCPDS cards-TaN (fcc) 143 JCPDS cards-TaN (hcp) 144 JCPDS cards-Ta2N 145 JCPDS cards-TaON 146 JCPDS cards-Ta 147 JCPDS cards-Al 148 JCPDS cards-Al2O3 149 JCPDS cards-Si 150 JCPDS cards-SiO2 151 Spectrum of XPS-C 152 Spectrum of XPS-N 153 Spectrum of XPS-O 154 Spectrum of XPS-Al 155 Spectrum of XPS-Ta 156 以微波電漿氧化製備中間電阻層之Al/TaOxNy/TaN元件之XPS分析-蝕刻時間570~660 s之Al 2p之XPS圖譜 157 以反應式濺鍍製備TaOxNy中間電阻層之Al/TaOxNy/TaN元件之XPS分析-蝕刻時間186~222 s之Al 2p之XPS圖譜 158

    [1] W. Lee, H. Han, A. Lotnyk, M. A. Schubert, S. Senz, M. Alexe, D. Hesse, S. Baik, U. Gösele, “Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch-2 density”, Nature Nanotechnology 3, 402-407, 2008.
    [2] C. Chappert, A. Fert, F. N. V. Dau, “The emergence of spin electronics in data storage”, Nature Materials 6, 813-823, 2007.
    [3] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, C. H. Lam, “Phase-change random access memory: A scalable technology”, IBM Journal of Research & Development 52, 465-479, 2008.
    [4] A. Sawa, “Resistive switching in transition metal oxides”, Materials Today 11, 28-36, 2008.
    [5] W. Y. Park, G. H. Kim, J. Y. Seok, K. M. Kim, S. J. Song, M. H. Lee, C. S. Hwang, “A Pt/TiO2/Ti schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays”, Nanotechnology 21, 195201, 2010.
    [6] P. Zhou, H. Shen, J. Li, L.Y. Chen, C. Gao, Y. Lin, T.A. Tang, “Resistance switching study of stoichiometric ZrO2 films for non-volatile memory application”, Thin Solid Films 518, 5652-5655, 2010.
    [7] Y. Seo, H.-M. An, H.-D. Kim, I. R. Hwang, S. H. Hong, B. H. Park , T. G. Kim, “High-speed and low-voltage performance in a charge-trapping flash memory using a NiO tunnel junction”, Journal of Physics D: Applied Physics 44, 155105, 2011.
    [8] M. W. Allen, S. M. Durbin, “Influence of oxygen vacancies on schottky contacts to ZnO”, Applied Physics Letters 92, 122110, 2008.
    [9] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U-I. Chung, I.-K. Yoo, K. Kim, “A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures”, Nature Materials 10, 625-630, 2011.
    [10] H. J. Wan, P. Zhou, L. Ye, Y. Y. Lin, “Retention-failure mechanism of TaN/CuxO/Cu resistive memory with good data retention capability”, Journal of Vacuum Science & Technology B 27, 2468-2471, 2009.
    [11] S. Jou, B.-R. Hwang, C.-J. Li, “Resistance switching properties in Cu/Cu-SiO2/TaN Device”, Proceeding of the World Congress on Engineering Vol II, London, 2011.
    [12] 拓墣產業研究所,「韓國次世代非揮發性記憶體發展現況與策略」,拓墣科技,民國96年。
    [13] J. L. Moll, Y. Tarui, “A new solid state memory resistor”, IEEE Transactions on Electron Devices 10, 338, 1963.
    [14] M. Muneeb, I. Akram, A. Nazir, “Non-volatile random access memory technologies (MRAM, FeRAM, PRAM)”, KTH Vetenskap och Konst, Smart Electronic Materials 6, 1, 2006.
    [15] A. K. Tagantsev, I. Stolichnov, E. L. Colla, N. Setter, “Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features”, Journal of Applied Physics 90, 1387, 2001.
    [16] S. Kim, J. Koo, S. Shin, Y. Park, “Improvement of retention loss in Pb(Zr,Ti)O3 capacitors using Ir/SrRuO3 top electrodes”, Applied Physics Letters 87, 212910, 2005.
    [17] 葉林秀、李佳謀、徐明豐、吳德和,「磁阻式隨機存取記憶體技術的發展—現在與未來」,中華民國物理學會之物理雙月刊,2004。
    [18] H. Akinaga, H. Shima, “Resistive random access memory (ReRAM) based on metal oxides”, Proceedings of the IEEE 98, 2237-2251, 2010.
    [19] H. Li, Y. Chen, “An overview of non-volatile memory technology and the implication for tools and architectures”, Automation & Test in Europe Conference & Exhibition, 731-736, 2009.
    [20] K. Szot, W. Speier, G. Bihlmayer, R. Waser, “Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3”, Nature Materials 5, 312-320, 2006.
    [21] S. Kim, Y.-K. Choi, “Resistive switching of aluminum oxide for flexible memory”, Applied Physics Letters 92, 223508, 2008.
    [22] C.-Y. Lin, D.-Y. Lee, S.-Y. Wang, C.-C. Lin, T.-Y. Tseng, “Reproducible resistive switching behavior in sputtered CeO2 polycrystalline films”, Surface & Coatings Technology 203, 480-483, 2008.
    [23] C.-J. Kim, S.-G. Yoon, K.-J. Choi, S.-O. Ryu, S.-M. Yoon, N.-Y. Lee, B.-G. Yu, “Characterization of silver-saturated Ge-Te chalcogenide thin films for nonvolatile random access memory”, Journal of Vacuum Science & Technology B 24, 721-724, 2006.
    [24] M. N. Kozicki, C. Gopalan, M. Balakrishnan, M. Mitkova, “A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte”, IEEE Transactions on Nanotechnology 5, 535-544, 2006.
    [25] H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J.-E. Kim, J. Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, R. S. Ruoff, S.-Y. Choi, “Graphene oxide thin films for flexible nonvolatile memory applications”, Nano Letters 10, 4381-4386, 2010.
    [26] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U-In Chung, J. T. Moon, “Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses”, IEEE International Electron Devices Meeting, 587-590, 2004.
    [27] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, M.-J. Tsai, “Metal–Oxide RRAM”, Proceedings of the IEEE 100, 1951-1970, 2012.
    [28] W. Guan, S. Long, Q. Liu, M. Liu, W. Wang, “Nonploar nonvolatile resistive switching in Cu doped ZrO2”, IEEE Electron Device Letters 29, 434-437, 2008.
    [29] J. Y. Son, Y.-H. Shin, “Direct observation of conducting filaments on resistive switching of NiO thin films”, Applied Physics Letters 92, 222106, 2008.
    [30] Y. M. Kim, J. S. Lee, “Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices”, Journal of Applied Physics 104, 114115, 2008.
    [31] K. M. Kim, B. J. Choi, B. W. Koo, S. Choi, D. S. Jeong, C. S. Hwang, “Resistive switching in Pt/Al2O3/TiO2/Ru stacked structures”, Electrochemical & Solid-State Letters 9, G343-G346, 2006.
    [32] C. Y. Lin, C.-Y. Wu, C.-Y. Wu, T.-C. Lee, F.-L. Yang, C. Hu, T.-Y. Tseng, “Effect of top electrode material on resistive switching properties of ZrO2 film memory devices”, IEEE Electron Device Letters 28, 366-368, 2007.
    [33] L.-E. Yu, S. Kim, M.-K. Ryu, S.-Y. Choi, Y.-K. Choi, “Structure effects on resistance switching of Al/TiOx/Al devices for RRAM applications”, IEEE Electron Device Letters 29, 331-333, 2008.
    [34] W.-Y. Chang, Y.-C. Lai, T.-B. Wu, S.-F. Wang, F. Chen, M.-J. Tsai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications”, Applied Physics Letters 92, 022110, 2008.
    [35] T.-M. Pan, C.-H. Lu, “Forming-free resistive switching behavior in Nd2O3, Dy2O3, and Er2O3 films fabricated in full room temperature”, Applied Physics Letters 99, 113509, 2011.
    [36] H. B. Lv, M. Yin, P. Zhou, T. A. Tang, B. A.Chen, Y. Y. Lin, A. Bao, M. H. Chi, “Improvement of endurance and switching stability of forming-free CuxO RRAM”, Non-Volatile Semiconductor Memory Workshop, 2008 and 2008 International Conference on Memory Technology and Design, 52-53, France, 2008.
    [37] Z. Fang, H. Y. Yu, X. Li, N. Singh, G. Q. Lo, D. L. Kwong, “HfOx/TiOx/HfOx/TiOx multilayer-based forming-free RRAM devices with excellent uniformity”, IEEE Electron Device Letters 32, 566-568, 2011.
    [38] W. Wu, X. Tong, R. Zhao, L. Shi, H. Yang, Y.-C. Yeo, “Novel bipolar TaOx-based resistive random access memory”, Non-Volatile Memory Technology Symposium, 1-5, Singapore, 2011.
    [39] G.-S. Park, X.-S. Li, “Observation of electric-field induced Ni filament channels in polycrystalline NiOx film”, Applied Physics Letters 91, 222103, 2007.
    [40] Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, “Observation of conducting filament growth in nanoscale resistive memories”, Nature Communications 3, 732, 2012.
    [41] C. Schindler, G. Staikov, R. Waser, “Electrode kinetics of Cu–SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories”, Applied Physics Letters 94, 072109, 2009.
    [42] C. Schindler, S. C. P. Thermadam, R. Waser, M. N. Kozicki, “Bipolar and unipolar resistive switching in Cu-doped SiO2”, IEEE Transactions on Electron Devices 54, 2762-2768, 2007.
    [43] Y. Tsuji, T. Sakamoto, N. Banno, H. Hada, M. Aono, “Off-state and turn-on characteristics of solid electrolyte switch”, Applied Physics Letters 96, 023504, 2010.
    [44] W.-G. Kim, S.-W. Rhee, “Effect of the top electrode material on the resistive switching of TiO2 thin film”, Microelectronic Engineering 87, 98-103, 2010.
    [45] K. P. Biju, X. J. Liu, E. M. Bourim, I. Kim, S. Jung, M. Siddik, J. Lee, H. Hwang, “Asymmetric bipolar resistive switching in solution-processed Pt/TiO2/W devices”, Journal of Physics D: Applied Physics 43, 495104, 2010.
    [46] W.-Y. Chang, H.-W. Huang, W.-T. Wang, C.-H. Hou,Y.-L. Chueh, J.-H. Hea, “High uniformity of resistive switching characteristicsin a Cr/ZnO/Pt device”, Journal of The Electrochemical Society 159, G29-G32, 2012.
    [47] B. L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications, Plenum Press, New York, U. S. A.,1984.
    [48] K. F. Schuegraf, D. Park, C. Hu, “Reliability of thin SiO2 at direct-tunneling voltages”, International Electron Devices Meeting, 609-612, 1994.
    [49] K. C. Kao, W. Hwang, Electrical Transport in Solids, Pergamon Press, New York, U. S. A.,1981.
    [50] Y. Xia, W. He, L. Chen, X. Meng, Z. Liu, “Field-induced resistive switching based on space-charge-limited current”, Applied Physics Letters 90, 022907, 2007.
    [51] W. R. Harrell, J. Frey, “Observation of Poole-Frenkel effect saturation in SiO2 and other insulating films”, Thin Solid Films 352,195-204, 1999.
    [52] M.-C. Chen, T.-C. Chang, Y.-C. Chiu, S.-C. Chen, S.-Y. Huang, K.-C. Chang, T.-M. Tsai, K.-H. Yang, S. M. Sze, M.-J. Tsai, “The resistive switching characteristics in TaON films for nonvolatile memory applications”, Thin Solid Films 528, 224-228, 2013.
    [53] H. K. Yoo, S. B. Lee, J. S. Lee, S. H. Chang, M. J. Yoon, Y. S. Kim, B. S. Kang, M.-J. Lee, C. J. Kim, B. Kahng, T. W. Noh, “Conversion from unipolar to bipolar resistance switching by inserting Ta2O5 layer in Pt/TaOx/Pt cells”, Applied Physics Letters 98, 183507, 2011.
    [54] C. Chen, C. Song, J. Yang, F. Zeng, F. Pan, “Oxygen migration induced resistive switching effect and its thermal stability in W/TaOx/Pt structure”, Applied Physics Letters 100, 253509, 2012.
    [55] S. Jou, C.-L. Chao, “Resistance switching of copper-doped tantalum oxide prepared by oxidation of copper-doped tantalum nitride”, Surface and Coatings Technology, doi:10.1016/j.surfcoat.2012.02.016, 2012.
    [56] T. Sakamoto, K. Lister, N. Banno, “Electronic transport in Ta2O5 resistive switch”, Applied Physics Letters 91, 092110, 2007.
    [57] L. Zhang, R. Huang, D. Gao, Y. Pan, S. Qin, Z. Yu, C. Shi, Y. Wang, “Thermally stable TaOx-based resistive memory with TiN electrode for MLC application”, Solid-State and Integrated Circuit Technology of IEEE International Conference 10, 1160-1162, 2010.
    [58] C. J. Li, S. Jou, W.-L. Chen, “Effect of Pt and Al electrodes on resistive switching properties of sputter-deposited Cu-doped SiO2film”, Japanese Journal of Applied Physics 50, 01BG08, 2011.
    [59] S. Jou, M.-E. Han, “Influence of interfacial tantalum oxynitride on resistive switching of Cu/Cu–SiO2/TaN”, Japanese Journal of Applied Physics 51, 055701, 2012.
    [60] S. Kim, Y.-K. Choi, “Resistive switching of aluminum oxide for flexible memory”, Applied Physics Letters 92, 223508, 2008.
    [61] Y. N. Chen, K. L. Pey, K. E. J. Goh, Z. Z. Lwin, P. K. Singh, S. Mahapatra, “Tri-level resistive switching in metal-nano crystal-based Al2O3/SiO2 gate stack”, IEEE Transactions on Electron Devices 57, 3001-3005, 2010.
    [62] 詹益明,「氧化亞銅-氧化鋅異質接面太陽能電池之研製」,國立台灣科技大學工程科技研究所碩士論文,民國99年。
    [63] B. D. Cullity, S. R. Stock, Elements of X-ray Diffraction, Prentice Hall, U.S.A., 2001.
    [64] D. J. O’Connor, B. A. Sexton, R. St. C. Smart, Surface Analysis Methods in Materals Science, Springer, 2nd Edition, New York, U.S.A., 2003.
    [65] C. A. Volkert, A. M. Minor, “Focused ion beam microscopy and micromachining”, MRS Bulletin 32, 389-399, 2007.
    [66] J. C. Vickerman, Surface analysis-The Priciple Techniques, John Wiley & Sons, New York, U.S.A., 1997.
    [67] T. Riekkinen, J. Molariusa, T. Laurila, A. Nurmela, I. Suni, J. K. Kivilahti, “Reactive sputter deposition and properties of TaNx thin films”, Microelectronic Engineering 64, 289-297, 2002.
    [68] S. O. Kasap, Principles of Electrical Engineering Materials and Devices, McGraw-Hill, New York, U. S. A., 1997.
    [69] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Minnesota, U.S.A, 1995.
    [70] M. Hara, E. Chiba, A. Ishikawa, T. Takata, J. N. Kondo, K. Domen, “Ta3N5 and TaON thin films on Ta foil: surface composition and stability”, Journal of Physical Chemistry B 107, 13441-13445, 2003.
    [71] A. Arranz, C. Palacio, “Composition of tantalum nitride thin films grown by low-energy nitrogen implantation: a factor analysis study of the Ta 4f XPS core level”, Applied Physics A 81, 1405-1410, 2005.
    [72] F. Kurnia, Hadiyawarman, C. U. Jung, R. Jung, C. Liu, “Composition dependence of unipolar resistance switching in TaOx thin films”, Physica Status Solidi (RRL) - Rapid Research Letters 5, 253-255, 2011.
    [73] K. Kato, H. Toyota, Y. Jin, T. Ono, “Characterization of tantalum oxy-nitrides deposited by ECR sputtering”, Vacuum 83, 592-595, 2009.
    [74] M. Yamane, K. Sasaki, Y. Abe, M. Kawamura, A. Noya, “Reasons for heat resistance and reduced oxide thickness of Ta2N anodized capacitors”, Electronics and Communications in Japan 79, 358-365, 1996.
    [75] K. Watanuki, A. Inokuchi, A. Banba, H. Suzuki, T. Koike, T. Adachi, T. Goto, A. Teramoto, Y. Shirai, S. Sugawa, T. Ohmi, “Electrical properties of metal-oxide-containing SiO2 films formed by organosiloxane sol-gel precursor”, Japanese Journal of Applied Physics 49, 111503, 2010.
    [76] C. K. Chung, T. S. Chen, N. W. Chang, “Effect of reactive gases flow ratios on microstruture and electrical resistivirt of Ta-N-O thin films by reactive co-sputtering”, Thin Solid Films 519, 5099-5102, 2011.
    [77] I. Popova, V. Zhukov, J. Yates, “Electostatic field enhancement of Al (111) oxidation”, Physical Review Letters 89, 276101, 2002.
    [78] W.-J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, K. Domen, “Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods”, Journal of Physical Chemistry B 107, 1798-1803, 2003.
    [79] P. Zhou, M. Yin, H. J. Wan, H. B. Lu, T. A. Tang, “Role of TaON interface for CuxO resistive switching memory based on acombined model”, Applied Physics Letters 94, 053510, 2009.
    [80] K. Wasa, M. Kitabatake, H. Adachi, Thin Film Materials Technology, William Andrew, New York, U. S. A., 2004.
    [81] J.-W. Park, J.-W. Park, D.-Y. Kim, J.-K. Lee, “Reproducible resistive switching in nonstoichiometric nickel oxide films grown by RF reactive sputtering for resistive random access memory applications”, Journal of Vacuum Science and Technology A 23, 1309-1313, 2005.
    [82] C.-H. Hsu, Y.-S. Fan, P.-T. Liu, “Multilevel resistive switching memory with amorphous InGaZnO-based thin film”, Applied Physics Letters 102, 062905, 2013.

    QR CODE