簡易檢索 / 詳目顯示

研究生: 蔡宜庭
Yi-Ting Tsai
論文名稱: 具有控制飽和及缺陷的多無人機之基於干擾觀測器的有限時間跟隨控制理論與實驗
Theory and Implementation of Disturbance-Observer-Based Finite-Time Following Control of Multiple UAVs with Saturated and Faulty Inputs
指導教授: 黃志良
Chih-Lyang Hwang
口試委員: 蘇順豐
Shun-Feng Su
陳博現
Bor-Sen Chen
練光祐
Kuang-Yow Lian
吳常熙
Chang-Hsi Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 50
中文關鍵詞: 干擾觀測器有限時間跟隨控制多架無人機Lyapunov穩定度理論底層PID跟隨控制
外文關鍵詞: Disturbance observer, Finite-time following control, Multiple UAVs, Lyapunov stability theory, Low-level cascade PID following control
相關次數: 點閱:214下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,設計了一個基於干擾觀測器的有限時間跟隨控制(Disturbance-Observer-Based Finite Time Following Control),用以快速完成對有輸入故障和飽和的多架無人機的指定追蹤。無人機的原始串聯PID控制被假設為一個內部控制迴路。相較之下,其外部迴圈被建模為一個具有未知干擾的二階系統,包括系統不確定性,陣風以及初始位置與速度誤差。領隊無人機被建模為第一個跟隨無人機所需的3D姿態。接著跟隨無人機將一個接一個地跟隨。為了在不確定的環境下完成任務,所提出的基於干擾觀測器的有限時間跟隨控制擁有非線性濾波跟隨誤差、非線性濾波增益、以及每架跟隨無人機中的觀測器對動態不確定因素的估計。不僅非線性濾波增益隨著非線性濾波跟隨誤差在零附近而增加,以實現其有限時間收斂,而且不確定性由干擾觀測器及時補償。最後,通過所提出的基於干擾觀測器的有限時間跟隨控制,實現從初始位置和速度誤差到指定線路編隊的模擬與實驗。


    In this thesis, a disturbance-observer-based finite-time following control (DO-FTFC) is designed to quickly accomplish an assigned following of multiple UAVs with input fault and saturation. The low-level cascade PID following control (LLC-PID-FC) in each UAV is an inner control loop. In contrast, its outer loop is modeled as a second-order system with unknown disturbance, including wind gust, system uncertainties, and initial pose and velocity errors. The leader is modeled as the desired 3D pose for the leader to follow. Then the consequent followers are one-by-one to follow. To fulfill the task under the uncertain environment, the proposed DO-FTFC possesses coupled following error, nonlinear filtering gain, and the estimation of dynamic uncertainties by an observer in each UAV. Not only does the nonlinear filtering gain increase as the coupled following error is in the vicinity of zero to achieve its finite-time convergence, but also the uncertainties is online compensated by disturbance observer. Finally, the simulation and experiment in comparison to LLC-PID-FC from initial pose and velocity errors to an assigned line formation validate the superiority of the proposed approach.

    摘要 ABSTRACT 目錄 表目錄 第一章 論文與文獻回顧 第二章 系統建構與任務陳述 第三章 基於干擾觀測器的有限時間跟隨控制 第四章 模擬與討論 第五章 實驗結果及討論 第六章 結論和未來研究 參考文獻

    [1] H. Menouar, I. Guvenc, K. Akkaya, A. S. Uluagac, A. Kadri, and A. Tuncer, “UAV-enabled intelligent transportation systems for the smart city: applications and challenges,” IEEE Communications Magazine, pp. 22-28, Mar. 2017.
    [2] S. Wan, J. Lu, P. Fan, and K. B. Letaief, “To smart city: public safety network design for emergency,” IEEE Access, vol. 6, pp. 1451-1465, 2018.
    [3] L. Hu and Q. Ni, “IoT-driven automated object detection algorithm for urban surveillance systems in smart cities,” IEEE Internet Things J., vol. 5, no. 2, pp. 747–754, Apr. 2018.
    [4] Y. Yao, Y. Sun, C. Phillips, and Y. Cao, “Movement-aware relay selection for delay-tolerant information dissemination in wildlife tracking and monitoring applications,” IEEE Internet Things J., vol. 5, no. 4, pp. 3079–3090, Aug. 2018.
    [5] S. Shakoor, Z. Kaleem, M. I. Baig, O. Chughat, T. Q. Duong, and L. D. Nguyen, “Role of UAVs in public safety communications: energy efficiency perspective,” IEEE Access, vol. 8, pp. 140665-140679, 2019.
    [6] M. Wan, G. Gu, W. Qian, K. Ren, X. Maldague, and Q. Chen, “Unmanned aerial vehicle video-based target tracking algorithm using sparse representation,” IEEE Internet Things J., vol. 6, no. 6, pp. 9689-9706, Dec. 2019.
    [7] Y. Jin, Z. Qian, and W. Yang, “UAV cluster-based video surveillance system optimization in heterogeneous communication of smart cities,” IEEE Access, vol. 8, pp. 55654-55666, 2020.
    [8] S. Aggarwal, N. Kumar, and S. Tanwar, “Blockchain-envisioned UAV communication using 6G networks: open issues, use cases, and future directions,” IEEE Internet Things J., vol. 8, no. 7, pp. 5416–5441, Apr. 2021.
    [9] M. A. Cheema, M. K. Shehzad, H. K. Qureshi, S. A. Hassan, and H. Jung, “A drone-aided blockchain-based smart vehicular network,” IEEE Trans. Intell. Transport. Syst., vol. 22, no. 7, pp. 4160-4170, Jul. 2021.
    [10] D. N. Das, R. Sewani, J. Wang, and M. K. Tiwari, “Synchronized truck and drone routing in package delivery logistics,” IEEE Trans. Intell. Transport. Syst., vol. 22, no. 9, pp. 5772-5782, Sep.2021.
    [11] M. Liu, Y. Wan, F. L. Lewis, E. Atkins, and D. O. Wu, “Statistical properties and airspace capacity for unmanned aerial vehicle networks subject to sense-and-avoid safety protocols,” IEEE Trans. Intell. Transport. Syst., vol. 22, no. 9, pp. 5890-5903, Sep.2021.
    [12] S. F. Abedin, M. S. Munir, N. H. Tran, Z. Han, and C. S. Hong, “Data freshness and energy-efficient UAV navigation optimization: a deep reinforcement learning approach,” IEEE Trans. Intell. Transport. Syst., vol. 22, no. 9, pp. 5994-6006, Sep. 2021.
    [13] X. Li, J. Wei, and H. Jiao, “Real-time tracking algorithm for aerial vehicles using improved convolutional neural network and transfer learning,” IEEE Trans. Intell. Transport. Syst., vol. 23, no. 3, pp. 2296-2305, Mar. 2022.
    [14] H. Li u, X. Li, M. Fan, G. Wu, W. Pedrycz, and P. N. Suganthan, “An autonomous path planning method for unmanned aerial vehicle based on a tangent intersection and target guidance strategy,” IEEE Trans. Intell. Transport. Syst., vol. 23, no. 4, pp.3061-3073, Apr. 2022.
    [15] M. Samir, S. Sharafeddine, C. M. Assi, T. M. Nguyen, and A. Ghrayeb, “UAV trajectory planning for data collection from time-constrained IoT devices,” IEEE Trans. Wireless Commun.,, vol. 19, no. 1, pp. 34-46, Jan. 2020.
    [16] D. Liu, W. Bao, X. Zhu, B. Fei, T. Men, and Z. Xiao, “Cooperative path optimization for multiple UAVs surveillance in uncertain environment,” IEEE Internet Things J., vol. 9, no. 13, pp. 10676-10692, Jul. 2022.
    [17] J. Chen, C. Du, Y. Zhang, P. Han, and W. Wei, “A clustering-based coverage path planning method for autonomous heterogeneous UAVs,” IEEE Trans. Intell. Transport. Syst., vol. 23, no. 12, pp. 25546-25556, Dec. 2022.
    [18] W. Honig, J. A. Preiss, T. K. S. Kumar, G. S. Sukhatme, and N. Ayanian, "Trajectory planning for quadrotor swarms," IEEE Trans. Robotics, vol. 34, no. 4, pp. 856-869, Aug. 2018.
    [19] X. Dong, Y. Hua, Y. Zhou, Z. Ren, and Y. Zhong, "Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems," IEEE Trans. Autom. Sci. Eng., vol. 16, no. 1, pp. 229-240, Jan. 2019.
    [20] J. Fu, G. Wen, W. Yu, T. Huang, and X. Yu, "Consensus of second-order multiagent systems with both velocity and input constraints," IEEE Trans. Ind. Electron., vol. 66, no. 10, pp. 7946-7955, Oct. 2019.
    [21] X. Dong, Y. Li, C. Lu, G. Hu, Q. Li, and Z. Ren, "Time-varying formation tracking for UAV swarm systems with switching directed topologies," IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3674-3685, Dec. 2019.
    [22] Q. Hu, Y. Shi, and C. Wang, "Event-based formation coordinated control for multiple spacecraft under communication constraints," IEEE Trans. Sys., Man, Cybern.: Syst.,vol. 21, no. 5, pp. 3168-3179, May 2021.
    [23] X. Sun, G. Wang, Y. Fan, D. Mu, and B. Qiu, "A formation autonomous navigation system for unmanned surface vehicles with distributed control strategy," IEEE Trans. Intell. Transp. Syst., vol. 22, no. 5, pp. 2834-2845, May 2021.
    [24] Y. Zhou, H. He, and C. Sun, "Fully distributed finite-time consensus of directed multiquadcopter systems via pinning control," IEEE Trans. Sys., Man, Cybern.: Syst., vol. 51, no. 8, pp. 5080-5089, Aug. 2021.
    [25] J. Sawant, U. Chaskar, and D. Ginoya, “Robust control of cooperative adaptive cruise control in the absence of information about preceding vehicle acceleration,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 9, pp. 5589-5598, Sep. 2021.
    [26] B. S. Chen, C. P. Wang, and M. Y. Lee, "Stochastic robust team tracking control of multi-UAV networked system under Wiener and Poisson random fluctuations," IEEE Trans. Cybern., vol. 51, no. 12, pp. 5786-5799, Dec. 2021.
    [27] Y. Zhu, J. Wu, and H. Su, “V2V-based cooperative control of uncertain, disturbed and constrained nonlinear CAVs platoon,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 3, pp. 1796-1806, Mar. 2022.
    [28] Y. Zou, H. Zhang, and W. He, "Adaptive coordinated formation control of heterogeneous vertical takeoff and landing UAVs subject to parametric uncertainties," IEEE Trans. Cybern., vol. 52, no. 5, pp. 3184-3195, May 2022.
    [29] G. Feng, D. Dang, and Y. He, “Robust coordinated control of nonlinear heterogeneous platoon interacted by uncertain topology,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 6, pp. 4982-4992, Jun. 2022.
    [30] A. V. Savkin and H. Huang, “Navigation of a UAV network for optimal surveillance of a group of ground targets moving along a road,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 9281-9285, Jul. 2022.
    [31] Z. Zhang, L. Zheng, Y. Zhou, and Q. Guo, “A novel finite-time-gain-adjustment controller design method for UAVs tracking time-varying targets,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 12531-12543, Aug. 2022.
    [32] J. Wang, X. Luo, J. Yan, and X. Guan, “Distributed integrated sliding mode control for vehicle platoons based on disturbance observer and multi power reaching law,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 4, pp. 3366-3376, Apr., 2022.
    [33] C.-L. Hwang and H. B. Abebe, “Generalized and heterogeneous nonlinear dynamic multiagent systems using online RNN-based finite-time formation tracking control and application to transportation systems,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 13708-13720, Aug. 2022.
    [34] C.-L. Hwang and L. J. Chang, “Internet-based smart-space navigation of a car-like wheeled robot using fuzzy-neural adaptive control,” IEEE Trans. Fuzzy Syst., vol. 16, no. 5, pp. 1271-1284, Oct. 2008.
    [35] C.-L. Hwang and Y. H. Chen, “Fuzzy fixed-time learning control with saturated input, nonlinear switching surface and switching gain to achieve null tracking error,” IEEE Trans. Fuzzy Syst., vol. 28, no. 7, pp. 1464-1476, Jul. 2020.
    [36] C.-L. Hwang and B. S. Chen, “Adaptive finite-time saturated tracking control for a class of partially known robots,” IEEE Trans. Syst., Man and Cybern.: Syst., vol. 51, no.9, pp. 5674-5684, Sep. 2021.
    [37] C.-L. Hwang, F. C. Weng, D. S. Wang, and F. Wu, “Experimental validation of speech improvement based adaptive stratified finite-time saturation control of omnidirectional service robot,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 52, no. 2, pp. 1317-1330, Feb. 2022.
    [38] C. L. Hwang, H. M. Wu, and J. Y. Lai, “On-line obstacle detection, avoidance and mapping of an outdoor quadrotor using EKF based fuzzy tracking incremental control,” IEEE Access, vol. 7, pp. 160203-160216, 2019.
    [39] C.-L. Hwang, J. Y. Lai, and Z. S. Lin, “Sensor-fused fuzzy variable structure incremental control for partially known nonlinear dynamic systems and application to an outdoor quadrotor,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 2, pp. 716-727, Apr. 2020.
    [40] I. Lopez-Sanchez, J. Moyrón, J. Moreno-Valenzuela, “Adaptive neural network-based trajectory tracking outer loop control for a quadrotor,” Aerospace Sci. Technol., vol. 129, p 107847, 2021.
    [41] C.-L. Hwang, C. C. Chiang, and Y. W. Yeh, “Adaptive fuzzy hierarchical sliding-mode control for the trajectory tracking of uncertain under-actuated nonlinear dynamic systems,” IEEE Trans. Fuzzy Syst., vol. 22, no. 2, pp. 286-297, Apr. 2014.
    [42] C.-L. Hwang, F. C. Weng, W. H. Hung, F. Wu, and C. Jan, “Simultaneous translation and rotation tracking design for sharp corner, obstacle avoidance, and time-varying terrain by hierarchical adaptive fixed-time saturated control,” Mechanical Systems and Signal Processing, vol. 161, Article no. 107969, Dec. 2021.

    QR CODE