簡易檢索 / 詳目顯示

研究生: 潘顗亘
I-Hsuan Pan
論文名稱: 碳化矽添加量及粒徑對鎂釔鋅合金機械性質的影響
Effect of Amount and Particle Size of Silicon Carbide on Mechanical Properties of Mg-Y-Zn Alloy
指導教授: 丘群
Chun Chiu
口試委員: 王朝正
Chaur-Jeng Wang
丘群
Chun Chiu
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 85
中文關鍵詞: 鎂釔鋅合金碳化矽鎂基複合材料機械性質
外文關鍵詞: Mg-Y-Zn alloy, Silicon carbide, Metal matrix composites, Mechanical property
相關次數: 點閱:499下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究使用 Mg97Y2Zn1 (at.%)合金作為基材,添加不同成分比例和粒徑尺寸之碳化矽(SiC)顆粒,以攪拌鑄造的方式製成鎂基複合材料。首先使用粒徑尺寸50 nm之SiC顆粒進行添加,分別添加1、3和5 wt.%。接著以分散性最佳的組別之成分比例作為添加不同粒徑時之添加參數,分別添加50 nm、1 μm和10 μm三種粒徑尺寸之SiC顆粒。最後觀察鎂基複合材料之顯微組織並進行機械性質測試。
      研究結果顯示,使用不同添加量及粒徑之SiC顆粒製成之鎂基複材,其相組成均為α-Mg、Mg12Y1Zn1 及 SiC。透過顯微組織觀察發現,添加量5 wt.% 時會有最明顯的團聚現象,且添加量之增加會使晶界連續析出的Mg12Y1Zn1減少,而由晶粒析出的Mg12Y1Zn1變多。拉伸試驗結果顯示,Mg97Y2Zn1 合金之降伏強度和抗拉強度分別為66 MPa及126 MPa,伸長率為6.9 %。添加SiC顆粒之鎂基複材機械強度均有明顯提升,特別是添加1 wt.% 粒徑50 nm 之SiC顆粒時,由於具有最多由晶界連續析出之Mg12Y1Zn1使晶界強化且SiC顆粒散佈性最佳,故其降伏強度增加至101 MPa,抗拉強度增加至186 MPa,伸長率增加至10.2 %。


    In this study, 1, 3 and 5 wt.% of SiC particles with the size of 50 nm were added to Mg97Y2Zn1 alloy by a stir-casting method. The best distribution of the SiC nano-particles was obtained with the addition of 1 wt.% SiC. Magnesium-based composites were fabricated with three different particle sizes (50 nm, 1 μm and 10 μm) of 1 wt.% of SiC to study the effect of particle size. Then, the microstructure of the composites was investigated by optical microscopy, scanning electron microscope and X-ray diffractometer. Mechanical properties of the composites were also studied.
    The results show that the phase composition of magnesium-based composites are α-Mg, Mg12Y1Zn1 and SiC. Microstructural characterization of the composites show that the highest degree of agglomeration of SiC particles occurred when 5 wt.% of SiC was added. The amount of Mg12Y1Zn1 precipitates along grain boundary decreases when the amount of SiC particles increases. The 0.2% yield strength, ultimate strength and elongation of the as-cast Mg97Y2Zn1 alloy are 66 MPa, 126 MPa and 6.9 %, respectively. The mechanical strength of the composites increase; however, the elongation of the composite with 5 wt.% of SiC decreases due to the agglomeration of SiC particles. The composite with 1 wt.% of SiC having a particle size of 50 nm shows the best overall performance because of the largest amount of Mg12Y1Zn1 and lowest agglomeration of SiC particles.

    摘要 I Abstract II 誌謝 III 圖目錄 VII 表目錄 IX 第一章 前言 1 第二章 文獻回顧 3 2.1 鎂及鎂合金的介紹 3 2.1.1 鎂 3 2.1.2 鎂合金 3 2.2 鎂合金符號之標示法 4 2.3 合金元素對鎂合金的影響 5 2.4 鎂釔鋅合金 7 2.5 鎂合金的強化方式 10 2.5.1 固溶強化 10 2.5.2 加工硬化 10 2.5.3 晶粒細化 11 2.5.4 析出強化 12 2.5.5 散佈強化 15 2.5.6 熱膨脹係數差異影響 15 2.6 鎂合金的熔煉 16 2.7 鎂基複合材料製程方式 18 2.8 文獻回顧整理 20 2.9 文獻心得與研究動機 23 第三章 實驗方法 26 3.1 實驗流程 26 3.2 實驗材料 28 3.3 熔煉設備與步驟 29 3.3.1 鑄造熔煉爐 29 3.3.2 鎂基複合材料製備步驟 30 3.4 試片製備流程 31 3.4.1 光學顯微鏡試片 31 3.4.2 掃描式電子顯微鏡試片 32 3.4.3 X光繞射儀試片 33 3.4.4 X光微分析試片 33 3.5 分析儀器 34 3.5.1 光學顯微鏡 34 3.5.2 場發射掃描式電子顯微鏡 35 3.5.3 X光繞射分析 36 3.5.4 X光微分析 38 3.6 密度量測和孔隙率計算 39 3.7 機械性質測試 40 3.7.1 微型維克氏硬度機 40 3.7.2 動態拉伸試驗機 41 3.7.3 拉伸試片 43 第四章 結果與討論 44 4.1 鎂釔鋅合金與鎂基複材之顯微組織觀察與分析 44 4.2 鎂釔鋅合金與鎂基複材中LPSO相含量計算 56 4.3 鎂釔鋅合金與鎂基複材中之空孔率計算 59 4.4 機械性質測試 61 4.4.1 微型維克氏硬度試驗 61 4.4.2 拉伸試驗 62 第五章 結論 67 參考文獻 68  

    [1] 王渠東、王俊、呂維潔,「輕合金及其工程應用」,機械工業出版社,2015。
    [2] 呂戊辰,「鎂及其合金的表面處理工學」,傳勝出版社,2002。
    [3] 趙莉萍,「金屬材料學」,北京大學出版社,2012。
    [4] 張玉龍、趙中魁,「實用輕金屬材料手册」,化學工業出版社,2006。
    [5] J. W. Kaczmar, K. Pietrzak and W. Wlosinski, “The production and application of metal matrix composite materials”, Journal of Materials Processing Technology, vol. 106, pp. 58-67, 2000.
    [6] W. F. Mcdonough and S. S. Sun, “The composition of the earth”, Chemical Geology, vol. 120, pp. 223-253, 1995.
    [7] 拓墣產業研究所,「智慧型車輛引爆車用電子新發展」,拓墣科技,2008。
    [8] A. A. Luo, “Recent magnesium alloy development for elevated temperature applications”, Journal of Materials Processing Technology, vol. 49, pp. 13-30, 2004.
    [9] M. K. Kulekci, “Magnesium and its alloys applications in automotive industry”, Journal of Materials Processing Technology, vol. 39, pp. 851-865, 2008.
    [10] ASTM International, “Standard Practice for Temper Designations of Magnesium Alloys, Cast and Wrought”, ASTM Standard B296, 2008.
    [11] 賴耿陽,「非鐵金屬材料」,復漢出版社,1998。
    [12] ASM, “Magnesium Alloys”, Metals Handbook 9th Edition, Vol.6, pp. 425-434, 1985.

    [13] 張永耀,「金屬熔銲學」,徐氏基金會,下冊,1976。
    [14] J. Y. Wang, A. Saufan, P. H. Lin, H. Y. Bor, S. Lee and Y. Kawamura, “Mechanical properties and strengthening behavior of Mg–Zn–MM alloy”, Materials Chemistry and Physics, vol. 148, no.1-2, pp. 28-31, 2014.
    [15] B. L. Mordike and T. Ebert, “Magnesium Properties-applications-potential”, Materials Science and Engineering: A, vol. 302, pp. 37-45, 2001.
    [16] A. C. Hanzi, I. Gerber, M. Schinhammer, J. F. Loffler, and P. J. Uggowitzer, “On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys”, Acta Biomater, vol. 6, pp. 1824-33, 2010.
    [17] A. Inoue, M. Matsushita, Y. Kawamura, K. Amiya, K. Hayashi, and J. Koike, “Novel Hexagonal Structure of Ultra-High Strength Magnesium-Based Alloys”, Materials Transactions, vol. 43, pp. 580-584, 2002.
    [18] Y. Kawamura, “Flame-resistant Magnesium Alloys with High Strength”, Magnesium Research Center, Kumamoto University, 2013.
    [19] Y. M. Zhu, A. J. Morton and J. F. Nie, “The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys”, Acta Materialia, vol. 58, no. 8, pp. 2936-2947, 2010.
    [20] Y. M. Zhu, A. J. Morton and J. F. Nie, “Growth and transformation mechanisms of 18R and 14H in Mg-Y-Zn alloys”, Acta Materialia, vol. 60, no. 19, pp. 6562-6572, 2012.
    [21] Y. Tang, B. Li, H. Tang, Y. Xu, Y. Gao, L. Wang and J. Guan, “Effect of long period stacking ordered structure on mechanical and damping properties of as-cast Mg–Zn–Y–Zr alloy”, Materials Science and Engineering: A, vol. 640, pp. 287-294, 2015.
    [22] K. L. Kendig and D. B. Miracle, “Strengthening mechanisms of an Al-Mg-Sc-Zr alloy”, Acta Materialia, vol. 50, no. 16, pp. 4165-4175, 2002.
    [23] R. Abbaschian, L. Abbaschian and R. E. Reed-Hill, “Physical Metallurgy Principles”, 6th Edition, 2009.
    [24] J. A. del Valle, F. Carreño and O. A. Ruano, “Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling”, Acta Materialia, vol. 54, no. 16, pp. 4247-4259, 2006.
    [25] A. Styczynski, C. Hartig, J. Bohlen and D. Letzig, “Cold rolling textures in AZ31 wrought magnesium alloy”, Scripta Materialia, vol. 50, no. 7, pp. 943-947, 2004.
    [26] C. S. Goh, J. Wei, L. C. Lee and A. Gupta, “Properties and deformation behavior of Mg-Y2O3 nanocomposites”, Acta Materialia, vol. 55, no. 15, pp. 5115-5121, 2007.
    [27] D. Zhemchuzhnikova and R. Kaibyshev, “Mechanical behavior of an Al-Mg-Mn-Sc alloy with an ultrafine grain structure at Cryogenic temperatures”, Advanced Engineering Materials, vol. 17, no. 12, pp. 1804-1811, 2015.
    [28] D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys”, 3th Edition, 2009.
    [29] S. F. Hassan and M. Gupta, “Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement”, Metallurgical and materials transactions A-physical metallurgy and materials science, vol. 36, no. 8, pp. 2253-2258, 2005.
    [30] R. J. Arsenault and N. Shi, “Dislocation generation due to differences between the coefficients of thermal expansion”, Materials Science and Engineering, vol. 81, pp. 175-187, 1986.
    [31] R. J. Arsenault and M. Taya, “Thermal residual stress in metal matrix composite”, Acta Materialia, vol. 35, no. 3, pp. 651-659, 1987.
    [32] A. A. Luo, “Magnesium casting technology for structural applications”, Journal of Magnesium and Alloys, vol. 1, no. 1, pp. 2-22, 2013.
    [33] C. I. Chang, X. H. Du and J. C. Huang, “Achieving ultrafine grain size in Mg–Al–Zn alloy by friction stir processing”, Scripta Materialia, vol. 57, no. 3, pp. 209-212, 2007.
    [34] D. H. StJohn, M. Qian, M. A. Easton and P. Cao, Z. Hildebrand, “Grain refinement of magnesium alloys”, Metallurgical and Materials Transactions A, vol. 36, no. 7, pp. 1669-1679, 2005.
    [35] H. Z. Ye and X. Y. Liu, “Review of recent studies in magnesium matrix composites”, Journal of Materials Science, vol. 39, no. 20, pp. 6153-6171, 2004.
    [36] C. Suryanarayana, “Mechanical alloying and milling”, Progress in Materials Science, vol. 46, no. 1-2, pp. 1-184, 2001.
    [37] S. K. Chaudhury, C. S. Sivaramakrishnan and S. C. Panigrahi, “A new spray forming technique for the preparation of aluminium rutile (TiO2) ex situ particle composite”, Journal of Materials Science, vol. 145, no. 3, pp. 385-390, 2004.
    [38] M. Manoharan, S. C. V. Lim and M. Gupta, “Application of a model for the work hardening behavior to Mg/SiC composites synthesized using a fluxless casting process”, Materials Science and Engineering A, vol. 333, no. 1-2, pp.243-249, 2002.
    [39] B. W. Chua, L. Lu and M. O. Lai, “Influence of SiC particles on mechanical properties of Mg based Composite”, Composite Structures, vol. 47, no. 1-4, pp.595-601, 1999.
    [40] P. Poddar and V. C. Srivastava, “Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process”, Materials Science and Engineering A, vol. 460, pp.357-364, 2007.
    [41] G. Sasaki, M. Yoshida, N. Fuyama and T. Fujii, “Modeling of compo-casting process and fabrication of AZ91D magnesium alloy matrix composites”, Journal of Materials Processing Technology, vol. 130, no. 20, pp.151-155, 2002.
    [42] H. Ferkel and B. L. Mordike, “Magnesium strengthened by SiC nanoparticles”, Materials Science and Engineering A, vol. 298, no. 1-2, pp.193-199, 2001.
    [43] L. Y. Chen, J. Q. Xu and X. C. Li, “Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles”, Nature, vol. 528, pp.539-543, 2015.
    [44] Y. Kawamura and M. Yamasaki, “Formation and Mechanical Properties of Mg97Zn1RE2 Alloys with Long-Period Stacking Ordered Structure”, Materials Transactions, vol. 48, no. 11 pp. 2986-2992, 2007.
    [45] Y. Yamamoto, Y. Sakamoto, Y. Masaki and S. R. Nishitani, “First Principles Calculations of Solute Ordering in Mg-Zn-Y Alloys”, Materials Transactions, vol. 54, no. 5 pp. 656-660, 2013.
    [46] H. Gao, K. Ikeda, T. Morikawa, K. Higashida and H. Nakashima, “Microstructures of Long-Period Stacking Ordered Phase of Mg-Zn-Y Alloy”, Materials Transactions, vol. 54, no.5, pp. 632-635, 2013.
    [47] B. Chen, D. Lin, X. Zeng and C. Lu, “Effect of Solid Solution Treatment on Microstructure and Mechanical Properties of Mg97Y2Zn1 Alloy”, Journal of Materials Engineering and Performance, vol. 22, no.2, pp. 523-527, 2012.
    [48] T. Itoi, T. Seimiya, Y. Kawamura and M. Hirohashi, “Long period stacking structures observed in Mg97Zn1Y2 alloy”, Scripta Materialia, vol. 51, pp. 107-111, 2004.
    [49] 劉旭杰,「添加 SiC 對鎂釔鋅合金之機械性質及腐蝕行為的影響」,碩士論文,國立台灣科技大學,台北,2017。
    [50] R. Casati and M. Vedani, “Metal Matrix Composites Reinforced by Nano-Particles-A Review”, Metals, vol. 4, no.1, pp. 65-83, 2014.
    [51] D. R. Asklend and P. Phulé, “The Science and Engineering of Materials 4th Edition”, 2005。
    [52] B. Wang, S. Xiong and Y. Liu, “Tensile fracture of as-cast and hot rolled Mg-Zn-Y alloy with long-period stacking phases”, Transactions of Nonferrous Metals Society of China, vol. 20, pp. 488-492, 2010.
    [53] H. K. Srivastva, P. K. Bhardwaj, R. P. Gond, V. Tiwari and R. Saroj, “Magnesium Matrix Composite: Problems and Possibility”, International Journal of Research, vol. 03, pp. 401-405, 2015.
    [54] ASTM International, “ASTM E8/E8M - 09 Standard Test Methods for Tension Testing of Metallic Materials”, 2011.
    [55] Y. Cai, M. J. Tan, G. J. Shen and H. Q. Su, “Microstructure and heterogeneous nucleation phenomena in cast SiC particles reinforced magnesium composite”, Materials Science and Engineering A, vol. 282, pp. 232-239, 2000.
    [56] B. Chen, D. Lin, X. Zeng and C. Lu, “Effects of yttrium and zinc addition on the microstructure and mechanical properties of Mg–Y–Zn alloys”, Journal of Materials Science, vol. 45, pp. 2510-2517, 2010.
    [57] B. Wang, S. Xiong and Y. Liu, “Tensile fracture of as-cast and hot rolled Mg-Zn-Y alloy with long-period stacking phase”, Transactions of Nonferrous Metals Society of China, vol. 20, pp. 488-492, 2010.

    QR CODE