簡易檢索 / 詳目顯示

研究生: 許益銑
Yi-Shian Shiu
論文名稱: LED機車頭燈散熱設計之數值與實驗整合研究
Integrated Numerical and Experimental Study on the Thermal Management for a Motorcycle LED Headlamp
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 莊福盛
Fu-Sheng Chuang
陳呈芳
Cheng-Fang Chen
郭鴻森
Hong-Sen Kou
李基禎
Ji-Jen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 181
中文關鍵詞: 高功率LED機車頭燈散熱模組
外文關鍵詞: High-Power LED, Motocycle Headlamp, Thermal Module
相關次數: 點閱:205下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於LED的進步,低功率LED已廣泛地應用於車輛的指示燈與尾燈,唯獨車頭燈尚未被廣泛的運用,主要因其車頭燈必須使用高功率LED方能達成照明之應用,而高功率LED則受到輸入功率高,使得散熱問題非常受到關注,因此在高功率LED的應用若無有效的熱管理機制,將容易造成LED因為溫度過高而造成燒毀。有鑑於此本文透過專利檢索,其運用於LED車頭燈之相關散熱技術作一匯整,並將所檢索之專利加以探討與分析,且針對一款待開發LED車頭燈設計出符合量產化之散熱模組,配合商業套裝軟體FLUENT進行三維熱流場分析,以了解整體頭燈熱流場分佈趨勢而得到較佳化之設計,並將其較佳化之設計實際製造出原型LED車頭燈,並透過恆溫箱進行實際量測將其數據與模擬值作一比較,以探討本文所建構之模擬結果與實際量測間之誤差。實驗結果顯示六顆LED之晶片接合點溫度為104.7~110.3 °C皆在安全工作範圍之內,在考量熱阻值下所模擬之結果其誤差也在3%以內,在此足以證明本文所建構之數值模擬方法具有其相當之可信度,藉此本文進而以模擬的方式探討不同於量產型之自然對流散熱方案,其中在結合散熱模組之氣流道方案中晶片接合點之最高溫下降至103.3 °C,即為本研究於自然對流中所模擬出較佳之散熱效能;最後本文再以數值模擬探討量產型LED車頭燈行駛狀態下可能造成的溫度變化,以幫助後續相關研究與開發之人員評估LED機車頭燈於實際應用時的溫度狀態。


    Recently, the technical advance of high-power LED has drawn a serious consideration to apply it on the headlamps by many automobile manufactures. Regarding its application on vehicles, LED offers many advantages, such as quick response, compact size, and high lighting efficacy, over the traditional light sources. However, the application of high-brightness LED on vehicle headlamp still faces some bottlenecks to breakthrough. Obviously, heat removal from LED chip to maintain low LED junction temperature is the most challenging task among them. Active cooling solutions are rarely considered as a practical solution due to cost and reliability concerns for vehicle applications. Therefore, under the natural convection constraint, this investigation intends to design the heat-rejecting mechanisms inside a motorcycle LED headlamp through a combined effort of numerical simulation, mockup fabrication, and experimental verification.
    At first, a comprehensive CFD simulation is executed to check the thermal dissipation performances for several proposed thermal modules, which are featured with heat sink and connecting mechanism. Then, the best thermal module is fabricated via CNC and used to perform this thermal experiment in an isothermal chamber. It is shown that the numerical results agree well with the experimental outcomes for utilizing an appropriate contact thermal resistance. Also, the LED junction temperatures are located at the range of 104.7~110.3 °C, which are evidently well below the safety limit (125 °C). Moreover, ventilation channel with an extended cooling fin inside it is imposed on the thermal module to further enhance its dissipating capability. Numerical result indicates that the highest junction temperature can be reduced to 103.3 °C, which represents a significant 7 °C improvement. In conclusion, the accomplishment of this research offers a rigorous and systematic design scheme for the motorcycle LED headlamp. This design scheme has been successfully utilized to generate and fabricate an efficient thermal module to control the LED chip temperature below safety limit. In addition, the LED thermal modules for automobile can then be undertaken by following the similar procedure.

    中文摘要 I 英文摘要 III 致 謝 V 目 錄 VI 圖索引 X 表索引 XIV 符號索引 XVI 第一章 緒論 1 1.1 前言 1 1.2 車輛照明之發展 6 1.3 應用於LED頭燈之散熱元件評估 13 1.3.1 主動式散熱器 14 1.3.2 被動式散熱器 16 1.4 文獻回顧 19 1.4.1自然對流熱傳之鰭片應用 19 1.4.2 LED散熱技術 21 1.5 研究動機與方法 24 第二章 散熱模組設計與專利技術探討 29 2.1 熱傳遞原理 29 2.2 LED熱阻結構 33 2.3專利分析之設定背景 37 2.4現有LED車燈散熱專利技術 42 2.4.1 強制對流之散熱專利技術 42 2.4.2 自然對流之散熱專利技術 45 2.4.3 KOITO散熱專利分析 55 第三章 數值方法 62 3.1 統御方程式 62 3.2 數值計算理論 65 3.2.1 數值求解流程 66 3.2.2 離散化方式 69 3.2.3 壓力與速度耦合(Pressure-Velocity Coupling)的處理 73 3.3紊流模式 75 3.4 數值邊界條件設定 78 3.5 網格獨立性驗證 82 第四章 LED頭燈之設計與模擬結果 85 4.1 LED頭燈模型 86 4.2 無接觸燈殼模式 92 4.3 接觸燈殼模式 101 4.3.1 原型車頭燈之模擬結果 103 4.3.2 量產型車頭燈之模擬結果 107 4.4 原型頭燈加入接觸熱阻值之模擬結果 111 第五章 實驗方法與驗證 116 5.1 實驗量測與設備 117 5.1.1 恆溫環境量測與擷取系統 117 5.1.2 溫度感測器與校正 120 5.2 發熱瓦數驗證方法 121 5.3 原型頭燈實驗結果與模擬驗證 126 5.3.1 實驗結果 126 5.3.2 模擬與實驗比較驗證 132 第六章 改變燈殼結構之散熱效益探討 137 6.1 增加燈殼鰭片之設計方案 138 6.1.1 燈殼頂部設置鰭片 138 6.1.2 設置水平型鰭片 141 6.1.3 設置垂直型鰭片 145 6.2 增加燈殼氣流道 150 6.2.1 設置對流孔 150 6.2.2 設置氣流道 153 6.2.3 結合散熱模組之氣流道 158 6.3行駛狀態下之探討 165 第七章 結論與建議 173 7.1 結論 173 7.2 建議 174 參考文獻 176 作者簡介 181

    [1] F. M. Steranka, J. Bhat, D. Collins and L. Cook, “High Power LED-Technology Status and Market Applications”, Phys. Stat. Sol. (a), vol. 194, Issue. 2, pp. 380-388, 2002.
    [2] 王健源,劉如熹, “ 白光發光二極體製作技術 : 21世紀人類的新曙光”,全華科技圖書股份有限公司,2001年。
    [3] D. A. Kirkpatrick, “Is Solid-State the Future of Lighting?”, Third International Conference on Solid State Lighting , Proceedings of SPIE, Vol. 5187, pp. 10-21, 2004.
    [4] F. K. Yam and Z. Hassan, “Innovative Advances in LED Technology”, Microelectronics Journal, Vol. 36, pp. 129-137, 2005.
    [5] NICHIA, http://www.nichia.co.jp/
    [6] Philips Lumileds Lighting, http://www.philipslumileds.com/
    [7] http://www.ledinside.com/en/ny_led_christmas_tree_200712
    [8] Edison Opto Corporation, Taiwan, “3W Edixeon Star”, Edistar Series Datasheet Version 1.3.
    [9] Çengel, Yunus A. , “Heat Transfer: a Practiceal Approach”, 2nd Ed., McGraw-HILL, 2003.
    [10] W. Elenbaas, “Heat Dissipation of Parallel Plates by Free Convection”, Physica, Vol. 9, pp. 1-28, 1942.
    [11] A. Bar-cohen, “Fin Thickness for an Optimized Natural-Convection Array of Rectangular Fins”, Journal of Heat Transfer-Transactions of ASME, Vol. 101, pp. 564-566, 1979.
    [12] A. T. Morrison, “Optimization of Heat Sink Fin Geometries for Heat Sinks in Natural Convection”, Inter.Society Conference on Thermal Phenomena, pp. 145-148, 1992.
    [13] G. Ledezma and A. Bejan, “Heat Sinks with Sloped Plate Fins in Natural and Forced Convection”, International Journal of Heat and Mass Transfer, Vol. 39, pp. 1773-1783, Jun 1996.
    [14] Susheela Narasimhan and Joseph Majdalani, “Characterization of Compact Heat Sink Models in Natural Convection”, IEEE Transactions on Components and Packaging Technologines, Vol. 25, No. 1, pp. 78-86, 2002
    [15] A. Bar-Cohen, M. Iyengar, and A. D. Kraus, “Design of Optimum Plate-Fin Natural Convective Heat Sinks”, Journal of Electronic Packaging, Vol. 125, pp. 208-216, Jun 2003.
    [16] Robert S. Metz, Dec. 22, 1992, “Heat-Dissipating Method and Device for LED Display”, United States Patent 5,173,839.
    [17] Peter A. Hochstein, Apr. 4, 2000, “LED Lamp Assembly with Means to Conduct Heat Away from the LEDs”, United States Patent 6,045,240.
    [18] Peter A. Hochstein, Feb. 11, 2003, “LED Intergrated Heat Sink”, United States Patent 6,517,218 B2.
    [19] Martin, S. Paul, Aug.10, 2005, “LED Lamps and Method of Cooling Their LED”, European Patent 1,561,993 A2.
    [20] Jianzheng Hu, Lianqiao Yang, Moo Whan Shin, Dec.19, 2005, “Mechanism and Thermal Effect of Delamination in Light-Emitting Diode Packages”, Microelectronics Journal, Vol. 38, pp. 157-163, Feb 2007.
    [21] Y. Lai, N. Cordero, F. Barthel, F. Tebbe, J. Kuhn, R. Apfelbeck, and D. Würtenberger, “Liquid Cooling of Bright LEDs for Automotive Applications”, Proceedings of 12th International Workshop on Thermal investigations of ICs, THERMINIC, pp. 80-85, 2006.
    [22] Joseph Bielecki, Ahmad Sameh Jwania, Fadi El Khatib, Thomas Poorman, “Thermal Considerations for LED Components in an Automotive Lamp”, Semiconductor Thermal Measurement and Management Symposium, Mar.18-22, 2007.
    [23] 陳志臣、胡凡勳、許國君、周漢源、鄭健宏,"高功率LED之熱場模擬與封裝分析",中華民國力學學會第29屆全國力學會議,2005年。
    [24] 林顯群、李龍育、鄭光廷、顏則修、張光仁,"高功率LED應用於機車頭燈上之散熱設計",第11屆車輛工程學術研討會,2006年。
    [25] 蕭飛賓、江志煌,"高功率LED模組應用於汽車適路性頭燈系統之熱傳分析與設計",中國機械工程學會第23屆全國學術研討會論文集,2006年。
    [26] 趙修武、林重勳、葉哲軒、楊潔,"基於EHD技術之LED散熱模組散熱效能初步研究",中國機械工程學會第24屆全國學術研討會論文集,2007年。
    [27] 李龍育, "高功率LED汽車頭燈散熱設計之模擬與實驗整合研究",國立台灣科技大學機械工程研究所碩士論文,2008年。
    [28] 兩岸暨歐美專立法,曾陳明汝 博士著
    [29] European Patent Office, http://ep.espacenet.com/?locale=en_EP
    [30] US Patent & Trademark Office, http://patft.uspto.gov/
    [31] 經濟部智慧財產局,http://www.tipo.gov.tw/
    [32] S. V. Patankar, and D. B. Spalding, “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
    [33] B. E. Launder, and D. B. Spalding, “Lectures in Mathematical Models of Turbulence”, Academic Press, London, England, 1972.
    [34] EDISON, http://www.edison-opto.com.tw/
    [35] Fluent 6.2 User’s Guide, Fluent Inc., 2005.
    [36] P. F. Incropera, and P. D. Dewitt, “Fundamentals of Heat and Mass Transfer”, 4th Ed., John Wiley & Sons, New York, 1996.

    QR CODE