簡易檢索 / 詳目顯示

研究生: 姬長孝
Chang-hsiao Chi
論文名稱: 風扇與散熱模組流場與散熱效果之調制:PIV與溫度量測技術之應用
Modulation of Fan and CPU Cooling Module Using PIV and Thermal Detection Techniques
指導教授: 黃榮芳
Rong-fung Huang
口試委員: 蘇裕軒
none
陳明志
none
孫珍理
none
葉啟南
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 160
中文關鍵詞: 溫度量測散熱模組流場風扇
外文關鍵詞: PTFV, CPU Cooling Module, PIV
相關次數: 點閱:292下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用質點軌跡流場觀察法(PTFV)與質點影像速度儀(PIV)
    之技術,診測風扇出口流場在軸向與徑向平面的特性,然後以市面上
    販售的CPU 散熱模組為藍本,藉由實驗方法探討散熱模組鰭片內之
    流場。接著發展輕薄型之整流裝置,置於風扇與鰭片之間,以質點軌
    跡流場觀察法與質點影像速度儀技術進行診測,得到良好的流場以增
    強CPU 散熱模組的散熱效果。最後再進行未改裝與已改良後CPU 散
    熱模組的性能測試,驗證所發展出來的整流器之有效性。質點軌跡流
    場觀察法以比重1.03 塑膠顆粒做為媒介,配合雷射光頁與高速攝影
    機得到流場觀測照片。質點影像速度儀是針對流場作量化的分析,得
    到速度場及流線分佈。在不同導流片角度下,使用定溫型的熱線風速
    儀,量測風扇入口的體積流率。利用熱電偶量測散熱模組之發熱體與
    環境的溫度。實驗顯示,在風扇葉穀下方產生迴流,且風扇出口流場
    受水槽尺寸的影響,造成流場結構呈現方形。經由導流段中增置經適
    當設計的導流片整流後,可有效抑制將鰭片內的迴流現象,達到增加
    有效散熱面積的效果。使用導流段高度3 mm 及導流片角度-15o 的整
    流器,在80W 的加熱率時,能將原本CPU 模擬器的溫度與環溫之差
    值降低約11%。顯現經流場調整後,散熱增強的效果頗為明顯。


    This study uses the particle tracking flow visualization method
    (PTFV) and the particle image velocimeter (PIV) to obtain the dynamic
    flow patterns and quantitative velocity distributions of the exit flows of
    axial fan and the flow structures between neighboring fins of the CPU
    cooler with an axial fan installed at the top of the heat sink. Both the flow
    fields at the exit of the fan and between neighboring fins of the CPU heat
    sink are characterized by a pair of counter-rotating vortices. The existence
    of the vortex pair makes the flow recirculate and retard in the gap
    between the fins so that the heat transfer rate from the fin surfaces to the
    flow is phenomenologically deteriorated. In order to reduce the negative
    effect of the flow patterns on the heat transfer rate, various means of flow
    conditioners are developed, e.g., the elongated plenum chamber, the cone
    at exit, and the guide vanes. The PTFV and PIV are again employed to
    diagnose the flow patterns after application of the flow conditioners. It is
    found that the methods of adding a plenum chamber and installing a
    cone-shaped extension section behind the fan hub are not substantially
    effective. The recirculation bubble would not disappear in a limited
    length of the plenum chamber. The recirculating flow does disappear in
    the flow conditioner with a long cone attached behind the fan hub.
    However, the flow velocity around the cone becomes drastically low so
    that the heat transfer performance would be down-graded. The guide-van
    flow conditioner is the only way that can achieve the goal of straightening
    the flow and cause insignificant head loss. A specially designed van
    arrangement pattern is successfully developed. The recirculation bubble
    between the neighboring fins almost diminishes and the pressure drop
    across the conditioner is optimized. The standard test methods applied to
    both of the natural and the flow-conditioned cooling modules show that
    the currently developed flow conditioner can effectively reduce the
    temperature of the CPU simulator. At its optimized cases, it is possible to
    use a guide-van flow conditioner of only 3 mm height to decrease the
    temperature of the CPU simulator by around 11% when compared with
    its natural situation.

    中文摘要 Abstract 致謝 目錄 符號索引 表圖索引 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.2.1 散熱鰭片(heat sink) 1.2.2 風扇(fan) 1.3 研究目的 第二章 實驗方法、設備與儀器 2.1 實驗的方法 2.1.1 相似定理 2.1.2 風扇流場觀察與診測 2.1.3 散熱模組之流場觀察與診測 2.1.4 溫度量測實驗 2.1.5 熱組的計算 2.1.6 風量量測實驗與風量計算 2.2 實驗設備 2.2.1 風扇流場觀察與診測 2.2.2 散熱模組之流場觀察與診測 2.2.3 溫度量測實驗 2.2.4 風量量測實驗 2.3 實驗儀器 2.3.1 質點特性分析 2.3.2 質點軌跡觀察法 2.2.3 質點影像速度儀 2.3.4 溫度量測實驗 2.3.5 風量測實驗 第三章 風扇流場診測 3.1 風扇流場觀察 3.1.1 軸向平面 3.1.2 徑向平面 3.2 風扇流場PIV診測 3.2.1 樣本平均 3.2.2 軸向平面 3.2.3 徑向平面 第四章 電腦散熱模組鳍片內流場之特性 4.1 鰭片間流場的可視化 4.2 增加整流裝置的流場觀察 4.2.1 遮蔽鰭片出口面積 4.2.2 增置導流段 4.2.3 在導流段中間裝置圓錐體 4.2.4 在導流段中增置導流片 4.3 散熱鰭片的流場診測 4.3.1 樣本平均 4.3.2 物理參數定義 4.3.3 鰭片間隙之流場診測 第五章 整流技術對CPU散熱效果之影響 5.1 導流裝置的配置 5.2 改變導流段高度的變化 5.3 導流段高度5 mm改變不同角度的風量測試 5.4 改變不同導流片角度 5.4.1 導流段高度h = 10 mm 5.4.2 導流段高度h = 5 mm 5.4.3 導流段高度h = 4 mm 5.4.4 導流段高度h = 3 mm 5.5 放射型式的導流片 第六章 討論 第七章 結論與建議 7.1 結論 7.2 建議 參考文獻

    [1] Knight, R. W., Goodling, J. S., and Hall, D. J., “Optimal Thermal Design of Forced Convection Heat Sinks-Analytical,” Journal of Electronic Packaging, Vol. 113, No. 3, 1991, pp. 313-321.
    [2] Knight, R. W., Goodling, J. S., and Gross, B. E., “Optimal Thermal Design of Air Cooling Forced Convection Finned Heat Sinks-Experimental Verification,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 5, 1992, pp. 754-760.
    [3] Bejan, A. and Sciubba, E., “The Optimal Spacing of Parallel Plates Cooled by Forced Convection,” International Journal of Heat and Mass Transfer, Vol. 35, No. 12, 1992, pp. 3259-3264.
    [4] Bejan, A. and Morega, A. M., “Optimal Arrays of Pin Fins and Plate Fins in Laminar Forced Convection,” Journal of Heat Transfer, Vol. 115, No. 1, 1993, pp. 75-81.
    [5] Jubran, B. A., Hamdan, M. A., and Abdualh, R. M., “Enhanced Heat Transfer, Missing Pin, and Optimization for Cylindrical Pin Fin Arrays,” Journal of Heat Transfer, Vol. 115, No. 3, 1993, pp. 576-583.
    [6] Kodo, Y., Marsushima, H., and Komatsu, T., “Optimization of Pin-Fin Heat Sink for Impingement Cooling of Electronic Packages,” Journal of Electronic Packaging, Vol. 122, 2000, pp. 240-246.
    [7] Jonsson, H. and Moshfegh, B., “Modeling of Thermal and Hydraulic Performance of Plate Fin, Strip Fin, and Pin Fin Heat Sink-Infulence of Flow Bypass,” The Insitiute of Electrical and Electronics Engineers, Vol. 24, No. 2, 2001, pp. 142-149.
    [8] Sathyamurthy, P. and Runstadler, P. W., “Numerical and Experimental Evaluation of Planar and Staggered Heat Sinks,” Thermomechanical Phenomena in Electronic Systems Proceedings of The Intersociety Conference, 1996, pp. 132-139.
    [9] Sikka, K. K., Torrance, K. E., Scholler, C. U., and Salanova, P. I., “Heat Sinks with Fluted and Wavy Plate Fins in Natural and Low-Velocity Forced convection,” IEEE Transactions on Components and Packaging Technologies, Vol. 25, No. 2, 2002, pp. 283-292.
    [10] Seri, L., “Optimum Design and Selection of Heat Sink,” IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A, Vol. 18, No. 4, 1995, pp. 812-817.
    [11] Iyengar, M. and Bar-Cohen, A., “Design for Manufacturability of SISE Parallel Plate Forced Convection Heat Sinks,” Thermomechanical Phenomena in Electronic Systems Proceedings of the Intersociety Conference, Vol. 1, 2000, pp. 141-148.
    [12] Thurlow, E., Prather, E., and Mansingh, V., “Fan Swirl Effects on Cooling Heat Sinks and Electronic Packages,” Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2000, pp. 91-98.
    [13] Loh, C. K., Nelson, D., and Chou, D. J., “ Thermal Characterization of Fan-Heat Sink Systems in Miniature Axial Fan and Micro Blower Airflow,” Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2001, pp. 111-116.
    [14] Mizuno, T. and Kikuchi, K., “Characteristics of Axial Flow Fan with Diagonal Flow Hub,” SAE Transactions, Vol. 99, No. 6, 1990, pp. 49-55.
    [15] Shimada, K., Kimura, K., and Watanabe, H., “A Study of Radiator Cooling Fan with Labyrinth Seal,” JSAE Review, Vol. 24, No. 4, 2003, pp. 431-439.
    [16] Estevadeordal, J., Gogineni, S., Copenhaver, W., Bloch, G., and Brendel, M., “Flow Field in a Low-Speed Axial Fan: A DPIV Investigation,” Experimental Thermal and Fluid Science, Vol. 23, No. 1-2, 2000, pp. 11-21.
    [17] Lee, S. J., Choi, J., and Yoon, J. H., “ Phase-Averaged Velocity Field Measurements of Flow Around an Isolated Axial-Fan Model,” Journal of Fluids Engineering, Transactions of the ASME, Vol. 125, No. 6, 2003, pp. 1067-1072.
    [18] Yoon, J. H. and Lee, S. J., “Stereoscopic PIV Measurements of Flow Behind an Isolated Low-Speed Axial-Fan,” Experimental Thermal and Fluid Science, Vol. 28, No. 8, 2004, pp. 791-802.
    [19] Grimes, R. and Davies, M., “Air Flow and Heat Transfer in Fan Cooled Electronic Systems,” Journal of Electronic Packaging, Transactions of the ASME, Vol. 126, No. 1, 2004, pp. 124-134.
    [20] Flagan, R. C. and Seinfeld, J. H., Fundamentals of Air Pollution Engineering, New Jersey, 1988, pp. 290-357.

    QR CODE