簡易檢索 / 詳目顯示

研究生: 孫柏彥
Bo-Yen Sun
論文名稱: 多自由度複合式散斑干涉儀
Compound Speckle Interferometer for Multi-Degree-of-Freedom Measurement
指導教授: 謝宏麟
Hung-Lin Hsieh
口試委員: 李朱育
Ju-Yi Lee
郭鴻飛
Hung-Fei Kuo
許正治
Cheng-Chih Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 129
中文關鍵詞: 外差散斑干涉儀多自由度複合式
外文關鍵詞: Heterodyne, speckle, interferometer, multi-degree-of-freedom, compound
相關次數: 點閱:319下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究提出一套多自由度複合式散斑干涉儀,用以進行精密位移及旋轉角量測。此套干涉儀系統結合外差干涉術和散斑干涉術之優點,並透過分光技術建立一套可以進行精密位移及旋轉角量測的架構,同時具備高解析度、非接觸的量測性質以及簡易方便的系統架構。
此套多自由度複合式散斑干涉儀之基礎架構為一雙自由度複合式散斑干涉儀,由外差光源及創新的複合式散斑光路系統組成。該複合式散斑光路系統結合一能夠測量面內位移的對稱式散斑干涉儀系統以及一能夠測量面內與面外位移的非對稱式散斑干涉儀系統。此種架構可經訊號相減獨立測量面內與面外位移,同時僅需要三到雷射聚焦在測量平面上的一點上,是一個簡單而有效的設計。由從測量平面散射的光形成的干涉條紋由光感測器接收,當平面發生位移時,干涉條紋的相位將根據都普勒頻移的原理而改變。各軸之相位變化可使用光的偏振態以及偏振片分離,並可透過相位解調獲得各軸之位移量。此雙自由度複合式散斑干涉儀架構可進一步擴展為三至六自由度的量測系統,用以量測位移及旋轉角,並可根據量測需求選擇是當的量測系統。
為了驗證本研究所提出的複合式散斑干涉儀的量測性能,本研究分別使用商用長行程步進平台及三軸和六軸精密定位平台對所有量測系統進行了多項實驗。其中包含不同波形、不同行程之位移與旋轉、重複性和解析度試驗,以及最大測量範圍實驗,並將干涉儀系統的量測結果與商用位移感測器的量測結果做比較。實驗結果證明,本研究所開發的複合式散斑干涉儀系統皆能夠準確地進行多自由度位移和旋轉量測,同時具備有高階析度、優異的重複性、大測量範圍以及可靈活運用的系統設計。


In this study, a compound speckle interferometer for multi-degree-of-freedom measurement is proposed. By combining heterodyne interferometry, speckle interferometry and beam splitting techniques, the system can perform precision displacement and rotation measurement, while having the advantages of high resolution, long-range non-contact measurement and a relatively simple configuration.
The basic configuration is a two degree-of-freedom (2-DOF) compound speckle interferometer consisting of a heterodyne light source and an innovative compound speckle optical configuration. This speckle optical configuration combines a symmetrical speckle interferometer system capable of measuring in-plane displacement with a novel asymmetric speckle interferometer system capable of measuring both in-plane and out-of-plane displacement. This arrangement allows for the independent measurement of two modes of surface displacement through signal subtraction, while only requiring three laser beams to converge on a single point on the measured surface, making this a simple yet effective design. The interference patterns formed from the scattered light reflecting off the measured surface is received as intensity signals by photodetectors. When the surface undergoes displacement, the phases of the interference patterns will shift according to the principle of Doppler frequency shifting. The resulting phase variation data can be separated by displacement axis via polarization, then the displacement values can be obtained through phase demodulation. The 2-DOF compound speckle interferometer can be further expanded into 3-DOF, 4-DOF, 5-DOF, and 6-DOF measurement systems, allowing for a wide selection to suit the needs of the required task.
In order to verify the performance of the proposed compound speckle interferometer, a series of measurement tests were performed with commercial precision motion stages on all variants of the system. These include displacement and rotation measurement tests with various waveforms and ranges, repeatability and resolution tests, as well as measurement range experiments. By comparing the acquired results with data from the internal displacement sensors of the motion stages, it is demonstrated that all variants of the compound speckle interferometer have the ability to accurately measure displacement and rotation in multiple DOFs, while also possessing the high resolution, excellent repeatability, long measurement ranges and a flexible design.

Abstract iii 摘要 v Table of Contents vi Table of Figures viii Nomenclature xiv Chapter 1. Introduction 1 1.1 Background 1 1.2 Literature Review 3 1.3 Research Objectives 23 1.4 Thesis Outline 24 Chapter 2. Measurement Principles 26 2.1 Laser Interferometry 26 2.2 Heterodyne Interferometry 27 2.3 Speckle Interferometry 35 2.4 Trigonometric rotation measurement technique 43 2.5 Chapter summary 45 Chapter 3. System Design 47 3.1 2-DOF Compound Speckle Interferometer 47 3.2 Modified 2-DOF Compound Speckle Interferometer 51 3.3 3-DOF Compound Speckle Interferometer 52 3.4 xyθxθz-type 4-DOF Compound Speckle Interferometer 56 3.5 xyzθy-type 4-DOF Compound Speckle Interferometer 58 3.6 5-DOF Compound Speckle Interferometer 60 3.7 6-DOF Compound Speckle Interferometer 61 3.8 Phase Demodulation System 63 3.9 Optical components and equipment required for the system 64 3.10 Chapter Summary 66 Chapter 4. Performance tests 67 4.1 Periodic Displacement and Rotation Tests 67 4.2 Non-periodic Displacement and Rotation Tests 88 4.3 Repeatability Tests 90 4.4 Resolution Tests 91 4.5 Sensitivity Tests 92 4.6 Measurement Range Tests 94 4.7 Chapter Summary 97 Chapter 5. Error Analysis 98 5.1 System Errors 99 5.2 Random Errors 113 5.3 Chapter Summary 115 Chapter 6. Conclusions and Future Work 117 6.1 Conclusions 117 6.2 Future Work 120 References 122 Appendix 127

[1] A.J. Fleming, “A review of nanometer resolution position sensors: Operation and performance,” Sensors and Actuators A: Physical, vol. 190, pp.106-126, 2013.
[2] A. Missoffe, L. Chassagne, S. Topçu, P. Ruaux, B. Cagneau and Y. Alayli, “New simple optical sensor: From nanometer resolution to centimeter displacement range,” Sensors and Actuators A: Physical, vol. 176, pp.46-52, 2012.
[3] L.H. Kang, D.K. Kim, and J.H. Han, “Estimation of dynamic structural displacements using fiber Bragg grating strain sensors,” Journal of Sound and Vibration, vol. 305 (3), pp.534-542, 2007.
[4] A. Derkevorkian, S.F. Masri, J. Alvarenga, H. Boussalis, J. Bakalyar and W.L. Richards, “Strain-based deformation shape-estimation algorithm for control and monitoring applications,” American Institute of Aeronautics and Astronautics Journal, vol. 51 (9), pp.2231-2240, 2013.
[5] F.J. Brosed, J.J. Aguilar, D. Guillomía and J. Santolaria, “3D geometrical inspection of complex geometry parts using a novel laser triangulation sensor and a robot,” Sensors, vol. 11 (1), pp.90-110, 2011.
[6] T. Pribanić, S. Mrvoš, and J. Salvi, “Efficient multiple phase shift patterns for dense 3D acquisition in structured light scanning,” Image and Vision Computing, vol. 28 (8), pp.1255-1266, 2010.
[7] A.A. Michelson and E.W. Morley, “On the relative motion of the Earth and the luminiferous ether,” American Journal of Science, Series 3, vol. 34, pp.333-345, 1887.
[8] X. Liu, W. Clegg, D.F. L. Jenkins, and B. Liu, “Polarization interferometer for measuring small displacement,” IEEE Transactions on Instrumentation and Measurement, vol. 50 (4), pp.868-871, 2001.
[9] J. Bahrmann, K.R. Detring, and G. Simonsohn, “Frequency shifting of laser radiation by a moving grating,” Optics Communications, vol. 22 (3), pp.365-368, 1977.
[10] J. Oldengarm, “Development of rotating diffraction gratings and their use in laser anemometry,” Optics & Laser Technology, vol. 9 (2), pp.69-71, 1977.
[11] Y. Li and G. Eichmann, “Multipass counterrotating wave-plate frequency shifters for heterodyne interferometry,” Optics Letters, vol. 11 (11), pp.718, 1986.
[12] J. La, H. Choi, and K. Park, “Heterodyne laser Doppler vibrometer using a Zeeman-stabilized He–Ne laser with a one-shot frequency to voltage converter,” Review of Scientific Instruments, vol. 76 (2), pp.025112, 2005.
[13] Y. Zhao; T.R. Zhou; and D. Li, “Heterodyne absolute distance interferometer with a dual-mode HeNe laser,” Optical Engineering, vol 38 (2), pp.246, 1999.
[14] S.T. Lin and Y.R. Cheng, “Wavelength shift determination using a dual-path heterodyne Mach–Zehnder interferometer,” Optics Communications, vol. 266 (1), pp.50-54, 2006.
[15] D.C. Su, M.H. Chiu, and C.D. Chen, “Simple two-frequency laser,” Precision Engineering, vol. 18 (2-3), pp.161-163, 1996.
[16] K.H. Chen, J.H. Chen, S.H. Lu, W.Y. Chang, and C.C. Wu, “Absolute distance measurement by using modified dual-wavelength heterodyne Michelson interferometer,” Optics Communications, vol. 282 (9), pp.1837-1840, 2009.
[17] C.K. Lee, C.C. Wu, S.J. Chen, L.B. Yu, Y.C. Chang, Y.F. Wang, J.Y. Chen, and J.W.J. Wu, “Design and construction of linear laser encoders that possess high tolerance of mechanical runout,” Applied Optics, vol. 43 (31), pp.5754-5762, 2004.
[18] C.C. Hsu, H. Chen, C.W. Chiang, and Y.W. Chang, “Dual displacement resolution encoder by integrating single holographic grating sensor and heterodyne interferometry,” Optics Express, vol. 25 (24), pp.30189-30202, 2017.
[19] J. Guan, P. Köchert, C. Weichert, R. Köning, L. Siaudinyte, and J. Flügge, “A differential interferometric heterodyne encoder with 30 picometer periodic nonlinearity and sub-nanometer stability,” Precision Engineering, vol. 50, pp.114-118, 2017.
[20] A. Kimura, W. Gao, W. Kim, K. Hosono, Y. Shimizu, L. Shi, and L. Zeng, “A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement,” Precision Engineering, vol. 36 (4), pp.576-585, 2012.
[21] H.L. Hsieh and S.W. Pan, “Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements,” Optics Express, vol. 23 (3), pp.2451-2465, 2015.
[22] J.Y. Lee and G.A. Jiang, “Displacement measurement using a wavelength-phase-shifting grating interferometer,” Optics Express, vol. 21 (21), pp.25553-25564, 2013.
[23] V. Ronchi, “Forty Years of History of a Grating Interferometer,” Applied Optics, vol. 3 (4), pp.437-451, 1964.
[24] J.Y. Lee, H.Y. Chen, C.C. Hsu, and C.C. Wu, “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution,” Sensors and Actuators A: Physical, vol. 137 (1), pp.185-191, 2007.
[25] J.A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect,” Journal of Physics E: Scientific Instruments, vol. 3, pp.214-218, 1970.
[26] R. Dändliker and J.F. Willemin, “Measuring microvibrations by heterodyne speckle interferometry,” Optics Letters, vol. 6 (4), pp.165-167, 1981.
[27] J.-Y. Lee, K.-Y. Lin, and S.-H. Huang, “Wavelength-modulated heterodyne speckle interferometry for displacement measurement,” Proceedings of SPIE 7389: Optical Measurement Systems for Industrial Inspection VI, SPIE Europe Optical Metrology, Munich, Germany, June 17, 2009, 73892G.
[28] J.Y. Lee, M.P. Lu, K.Y. Lin, and S.H. Huang, “Measurement of in-plane displacement by wavelength-modulated heterodyne speckle interferometry,” Applied Optics, vol. 51 (8), pp.1095-1100, 2012.
[29] J. Qin, Z. Gao, X. Wang and S. Yang, “Three-dimensional continuous displacement measurement with temporal speckle pattern interferometry,” Sensors, vol. 16 (12), pp.2020, 2016.
[30] J.T. Wu, “Development of six degree-of-freedom heterodyne speckle interferometer,” Master’s thesis, Dept. Mech. Eng., National Taiwan Univeristy of Science and Technology, Taipei City, Taiwan, 2017.
[31] Y. Fainman, J. Shamir, D. Peri, and A. Brunfeld, “Polarization properties of speckle patterns scattered from rough conductors,” Journal of the Optical Society of America A, vol. 4 (12), pp.2205-2212, 1987.
[32] J.D. van der Laan, J.B. Wright, D.A. Scrymgeour, S.A. Kemme, and E.L. Dereniak, “Evolution of circular and linear polarization in scattering environments,” Optics Express, vol. 23 (25), pp.31874-31888, 2015.
[33] T. Suzuki and R. Hioki, “Translation of Light Frequency by a Moving Grating,” Journal of the Optical Society of America, vol. 57 (12), pp.1551, 1967.
[34] M.P. Kothiyal and C. Delisle, “Optical frequency shifter for heterodyne interferometry using counterrotating wave plates,” Optics Letters, vol. 9 (8), pp.319-321, 1984.
[35] Z. Füzessy, Á. Kiss, and P. Pacher, “Laser interferometer for position measurement and control,” Mechatronics, vol. 3 (2), pp.181-184, 1993.
[36] C. Chou, J.C. Shyu, Y.C. Huang, and C.K. Yuan, “Common-path optical heterodyne profilometer: a configuration,” Applied Optics, vol. 37 (19), pp.4137-4142, 1998.
[37] K. Zhu, B. Guo, Y. Lu, S. Zhang, and Y. Tan, “Single-spot two-dimensional displacement measurement based on self-mixing interferometry,” Optica, vol. 4 (7), pp.729-735, 2017.
[38] D.C. Su, M.H. Chiu, and C.D. Chen, “A heterodyne interferometer using an electro-optic modulator for measuring small displacements,” Journal of Optics, vol. 27, pp.19-23, 1996.
[39] “The influence of a magnetic field on radiation frequency,” Proceedings of the Royal Society of London (1854-1905), vol. 60, pp.513-514, 1896.
[40] E.I. Gordon, “A review of acoustooptical deflection and modulation devices,” Applied Optics, vol. 5 (10), pp.1629-1639, 1966.
[41] E.A. Donley, T.P. Heavner, F. Levi, M.O. Tataw, and S.R. Jefferts, “Double-pass acousto-optic modulator system,” Review of Scientific Instruments, vol. 76, pp.063112, 2005.
[42] P.K. Rastogi, Optical measurement techniques and applications. Artech House, 1997.
[43] Y. Arai, “Development of in-plane and out-of-plane deformations simultaneous measurement method for the analysis of buckling,” Optical Engineering, vol. 54 (2), pp.024102, 2015.
[44] K. Creath, “Phase-shifting speckle interferometry,” Applied Optics, vol. 24 (18), pp.3053-3058, 1985.
[45] M. Lu, S. Wang, L. Aulbach, and A.W. Koch, “Simultaneous displacement and slope measurement in electronic speckle pattern interferometry using adjustable aperture multiplexing,” Applied Optics, vol. 55 (22), pp.5868-5875, 2016.
[46] D. Francis, D. Masiyano J. Hodgkinson and R.P. Tatam, “A mechanically stable laser diode speckle interferometer for surface contouring and displacement measurement,” Measurement Science and Technology, vol. 26, no. 5, 2015.
[47] C.C. Hsu, C.C. Wu, J.Y. Lee, H.Y. Chen, and H.F. Weng, “Reflection type heterodyne grating interferometry for in-plane displacement measurement,” Optics Communications, vol. 281 (9), pp.2582-2589, 2008.
[48] J.W. Goodman, Speckle Phenomena in Optics: Theory and Applications, Roberts & Co., 2008.
[49] P. Jacquot, “Speckle Interferometry: A Review of the Principal Methods in Use for Experimental Mechanics Applications,” Strain, vol. 44 (1), pp.57-69, 2008.

QR CODE