簡易檢索 / 詳目顯示

研究生: Adam Mekonnen Engida
Adam - Mekonnen Engida
論文名稱: Isolation and Identification of Antioxidant Compounds from sarang semut (Myrmecodia pendens)
Isolation and Identification of Antioxidant Compounds from sarang semut (Myrmecodia pendens)
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: Huynh Lien Huong
Huynh Lien Huong
Felycia Edi Soetaredjo
Felycia Edi Soetaredjo
陳燿騰
Yaw-Tern Chern
王孟菊
Meng-Ji Wang
Truong Chi Thanh
Truong Chi Thanh
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 80
中文關鍵詞: 蟻窩樹溶劑萃取總酚含量總類黃酮含量
外文關鍵詞: Myrmecodia pendens
相關次數: 點閱:197下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 其中一个不能很好地识别药用植物是萨朗semut(Myrmecodia决案件),这可能是治疗agents.Traditionally的新来源,人们通常会用巨大的肿胀(称为块茎)萨朗semut作为草药的一部分。萨朗针对不同的癌细胞semut的提取物的功效进行了报道。所观察到的抗氧化活性和萨朗semut提取的治疗效果被认为是由于包含在它的抗氧化剂化合物。

    使用水浴萃取在55℃从萨朗semut抗氧化剂的回收进行了研究。的参数,如提取时间的影响,溶剂混合物和溶剂采样比的组合物进行了研究,在三个级别的每个和最佳提取参数为:时间,4小时;溶剂(乙醇/水;体积/体积),80%;和溶剂而采样率,50毫升/克。在这些最佳条件,得到的13.82%的产率。利用DPPH自由基的提取物的自由基清除活性(抗氧化活性)进行评价的IC50发生在96.21±9.03μg/mL的提取物。总酚含量(TPC)和总黄酮含量(TFC)采用的设计方法确定,发现分别为330.61±2.13毫克没食子酸当量/克干提取物和63.28±1.75毫克槲皮素当量/克干提取物。在最佳条件下得到的提取物用HPLC分析和5黄酮类化合物被识别和它们的内容是(毫克/克干提取物):山奈酚(13.767,luteoline(0.005),rutine(0.003),槲皮素(0.030),芹菜素(4.700)。

    作为溶剂;用热回流萃取法,用乙醇/水(体积/体积80:20)萨朗semut萃取。使用己烷和乙酸乙酯的粗提取物(CE)进行分级分离。乙酸乙酯部分(EAF)被选定为根据它的抗氧化活性进一步分析。两个主要的酚类化合物(迷迭香酸和原花青素B1)进行了鉴定,确认和使用的技术,LC / ESI/ MS / MS,UV / Vis和高效液相色谱组合进行定量。但确认第三化合物(原花青素B1的低聚物)和定量受阻于缺乏商业标准。的迷迭香酸和原花青素B1中的浓度被发现是,分别20.688±1.573毫克/克干样品和3.236±0.280毫克/克干样品。 

    可靠的RP/HPLC/UV分析方法估算总酚和总黄酮含量的开发。商业没食子酸,抗坏血酸,槲皮素和儿茶素用作方法开发期间的标准。总酚含量(TPC)和总黄酮含量(TFC)从萨朗的甲醇提取物来确定semut采用高效液相色谱法。在这项工作中所开发的高效液相色谱法,通过分析加标样品的公知的分光光度法进行比较。像标准偏差,平均值,百分比回收率和%相对标准偏差(%RSD)的参数被用来比较这两种方法。精度(%回收)的新方法,从90.82%到101.34%和%相对标准偏差小于1.0%。这些值是通过使用分光光度测定方法获得的恢复%和%RSD的范围内(89.44 - 101.90恢复%和0.44 - 3.59%RSD)。


    One of the not well identified medicinal plants is sarang semut (Myrmecodia pendens) which might be a new source of therapeutic agents.Traditionally, folks usually use the huge swelling (known as tuber) part of sarang semut as herbal remedies. The efficacy of extracts of Sarang semut against different cancer cells was reported. The observed antioxidant activity and therapeutic effect of sarang semut extract was supposed to be due to antioxidant compounds contained in it.
    The recovery of antioxidants was investigated using water bath extraction at 55oC from sarang semut. The effects of parameters such as extraction time, composition of solvent mixture and solvent to sample ratio were investigated at three levels for each and the optimum extracting parameters were: time, 4 h; solvent (ethanol/water; v/v), 80%; and solvent to sample ratio, 50 mL/g. Under these optimal conditions, a yield of 13.82% was obtained. The free radical scavenging activity (antioxidant activity) of the extract was evaluated using DPPH radical and the IC50 occurred at 96.21 ± 9.03 μg /mL of extract. The total phenol content (TPC) and total flavonoid content (TFC) were determined using the designed methods and found to be 330.61 ± 2.13 mg gallic acid equivalent/g dry extract and 63.28 ± 1.75 mg quercetin equivalent/g dry extract respectively. The extract obtained under optimum conditions was analyzed by HPLC and five flavonoid compounds are identified and their contents are (mg/g dry extract): kaempferol (13.767, luteoline (0.005), rutine (0.003), quercetin (0.030) and apigenin (4.700).
    The crude extract (CE) obtained under optimum condition was fractionated using hexane and ethyl acetate. Ethyl acetate fraction (EAF) was selected for further analysis based on its antioxidant activity. Two major phenolic compounds (rosmarinic acid and procyanidin B1) were identified, confirmed and quantified using a combination of techniques LC/ESI/MS/MS, UV/Vis and HPLC. But confirmation and quantification of the third compound (oligomer of procyanidin B1) was hampered by lack of commercial standard. The concentration of rosmarinic acid and procyanidin B1 was found to be 20.688 ± 1.573 mg/g dry sample and 3.236 ± 0.280 mg/g dry sample, respectively.
    Reliable RP-HPLC/UV analytical method was developed for estimation of total phenolic and total flavonoid contents. Commercial gallic acid, ascorbic acid, quercetin and catechin were used as standards during method development. Total phenolic content (TPC) and total flavonoid content (TFC) were determined from methanol extracts of sarang semut using HPLC method. The HPLC method developed in this work was compared with the well-known spectrophotometric method by analyzing spiked samples. Parameters like standard deviation, mean value, percentage recovery and % relative standard deviation (%RSD) were used to compare the two methods. The accuracy (% recovery) of the new method varies from 90.82% to 101.34 % and %RSD was less than 1.0%. These values are within the range of % recovery and % RSD obtained by using spectrophotometric method (89.44 - 101.90 %recovery and 0.44 – 3.59 %RSD).

    List of Abbreviations List of Figures List of Tables Chapter 1 Introduction 1.1 Antioxidants in medicinal plants 1.2 Flavonoids Chapter 2 Literature review 2.1 Sarang semut (Myrmecodia pendens) 2.2 Traditional medicinal values of Myrmecodia pendens 2.3 Phytotherapic efficacy of extract of Myrmecodia pendens 2.4 Aims of the study Chapter 3 Experimental section 3.1 Materials 3.2 Instrumentation 3.3 Methodology 3.3.1 Sample preparation 3.3.2 Extraction 3.3.2.1 Extraction A 3.3.2.2 Extraction B 3.3.2.3 Extraction C 3.3.3 Analysis 3.3.3.1 DPPH radical scavenging activity assay 3.3.3.2 Determination of total phenolic content (TPC) 3.3.3.3 Determination of total flavonoid content (TFC) 3.3.3.4 HPLC analysis 3.3.3.5 Monitoring of antioxidant capacity of fractions 3.3.3.6 Evaluation of ferric antioxidant reducing power of fractions 3.3.3.7 LC–MS/MS analysis 3.3.3.8 UV-Vis spectrophotometer scanning 3.3.3.9 HPLC/UV analysis for confirmation and quantification 3.3.3.10 Method development 3.3.3.11 Preparation of standard and sample solutions 3.3.3.12 Wavelength selection 3..3.3.13 HPLC method development 3.3.3.14 Spectrophotometric determination of TPC 3.3.3.15 Spectrophotometric determination of TFC 3.3.3.16 Method validation Chapter 4 Results and discussion 4.1 Extraction conditions and further analysis 4.1.1 Optimization of extraction condition 4.1.2 DPPH radical scavenging activity 4.1.3 TFC and TFC 4.1.4 Analysis of flavonoids by HPLC 4.2.1 Antioxidant capacity and ferric reducing power of fractions and crude extract 4.2.2 LC–MS/MS analysis 4.2.3 UV-Vis spectrophotometer analysis 4.2.4 .Confirmation and quantification of compounds 4.2.5 Inspection of DPPH scavenging capacity of fractions and pure compounds 4.3.1 Method development 4.3.2 Method validation Chapter 5 Conclusion References List of publications APPENDIX A APPENDIX B BIOGRAPHICAL DATA

    [1] Soong Y.Y., Barlow P.J., Isolation and structure elucidation of phenolic compounds from longan (Dimocarpus longan lour.) seed by high-performance liquid chromatography–electrospray ionization mass spectrometry. J. Chromatogr. A., 2005, 1085, 270-277.
    [2] Mussatto S.I., Ballesteros L.F., Martins S., Teixeira J.A., Extraction of antioxidant phenolic compounds from spent coffee grounds. Sep. Purif. Technol., 2011, 83, 173-179.
    [3] Roberto G. Capillary electrophoresis of phytochemical substances in herbal drugs and medicinal plants. J. Pharmaceut. Biomed., 2011, 55, 775-801.
    [4] Oueslati S. , Trabelsi N., Boulaaba M., Legault J., Abdelly C., Ksouri R.. Evaluation of antioxidant activities of the edible and medicinal suaeda species and related phenolic compounds. Ind. Crops Prod., 2012, 36, 513-518.
    [5] de Abreu D.A.P., Rodriguez K.V., Cruz J.M., Extraction, purification and characterization of an antioxidant extract from barley husks and development of an antioxidant active film for food package. Innov. Food Sci. Emerg., Technol., 2012, 13, 134-141.
    [6] Fernandez-Agullo A., Pereira E., Freire M.S., Valentao P., Andrade P.B., Gonzalez-Alvarez J., Pereira J.A., Influence of solvent on the antioxidant and antimicrobial properties of walnut (juglans regia l.) green husk extracts. Ind Crop Prod., 2013, 42, 126-132.
    [7] Kaol Y.T, Lu M.J., Cheni C Preliminary analyses of phenolic compounds and antioxidant activities in tea pollen extracts. J Food Drug Anal., 2011, 19, 470-477.
    [8] Kim J.S., Kang O.J, Gweon O.C., "Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. J Funct. Foods, 2013, 5, 80-86.
    [9] Wan P., Sheng Z., Han Q., Zhao Y., Cheng G., Li Y., Enrichment and purification of total flavonoids from flos populiextracts with macroporous resins and evaluation of antioxidantactivities in vitro, J. Chromatogr. B., 2014, 945, 68– 74.
    [10] Gotti R.. Capillary electrophoresis of phytochemical substances in herbal drugs and medicinal plants. J. Pharmaceut. Biomed., 2011, 55, 775-801.
    [11] Martens S., Mithofer A., Flavones and flavones syntheses. Phytochem., 2005, 66, 2399-2407.
    [12] Boue S.M., Carter-Wientjies C.H., Shih B.Y., Cleveland T.E., Identification of flavones aglycones and glycosides in soybean pods by liquid chromatography-Tandem mass spectroscopy. J. Chromatogr. A., 2003, 991, 61-68.
    [13] Plochmann,K., Korte G., Koutsilieri E., Richling E., Riederer P., Rethwilm A., Schreier P., Scheller C., Structure-activity relationships of flavonoids-induced cytotoxicity on human leukemia cells. Arch. Biochem. Biophys., 2007, 460, 1-9.
    [14] Androutsopoulos V.P., Papakyriakou A., Vourloumis D., Tsatsakis A.M., Spandidos D.A., Dietary flavonoids in cancer therapy and prevention: Substrate and inhibitors of cytochrome p450CYP1 enzymes. Pharmacol Ther., 2010, 126, 9-20.
    [15] Lisa M.S., Rahman R.A., Mandana B., Jinap S., Rahmat A., Zaidul I.S.M., Hamid A., Supercritical carbon dioxide extraction of bioactive flavonoids from Strobilanthes crispus (pecah Kaca). Food Bioprod. Process., 2010, 88, 319- 326.
    [16] Zin Z.M., Abdul-Hamid A., Osman A., Anti oxidative activity of extracts from mengkudu (Morinda citrifolia L.) root, fruit and leaf. Food Chem., 2002, 78, 227-2.
    [17] Rijk E.D., OUT P., Niessen W.M.A., Ariese F., Gooijer C., Brinkman U.A.T., Analytical separation and detection methods of flavonoid. J. Chromatogr. A., 2006, 1112, 31-63
    [18] Tian X.J., Yang X.W., Yang X., Wang K., Studies of intestinal permeability of 36 flavonoids using Caco-2 cell monolayer model. Int. J. Pharm., 2009, 367, 58-64.
    [19] Heim K.E., Tagliaferro A.R., Bobilya D.J., Flavonoid antioxidants;chemistry, metabolism and structure-activity relationships. J Nutr. Biochem., 2002, 13, 572-584.
    [20] Seyoum A., Asres K., EI-Fiky F.K., Structure-radical scavenging activity relationships of flavonoids. Phytochem. 2006, 67, 2058-2070.
    [21] Merken H.M., Beecher G.R., Liquid chromatographic method for the separation and quantification of prominent flavonoid aglycones. J. Chromatogr. A., 2000, 897, 177-184.
    [22] Ajila C.M., Rao L.J., Rao U.J., Characterization of bioactive compounds from raw and rip Mangifera indica L. peel extracts. Food Chem. Toxicol., 2010, 48, 3406- 3411.
    [23] Barreca D., Bellocco E., Caristi C., Leuzzi U., Gattuso G., Distribution of C- and O- glycosyl flavonoids, (3-hydroxy-3-methylglutaryl)glycosyl flavanones and furocoumarins in Citrus aurantium L. juice. Food Chem., 2011, 124, 576-582.
    [24] Prochazkova D., Bousova I., Wilhelhelmova N., Antioxidant and prooxidant properties of flavonoids. . Fitoterapia., 2011, 82, 513-523.
    [25] Erlund I., Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res., 2004, 24, 851-874.
    [26] Barontini M., Bernini R., Crisante F., Fabrizi G., Selective and efficient oxidative modifications of flavonoids with 2-iodoxybenzoic acid (IBX). Tetrahdron., 2010, 66, 6047-6053.
    [27] Biesaga M., Influnce of extraction methods on stability of flavonoids. J. Chromatogr A., 2011, 1218, 2505-2512.
    [28] Hertiani T., Sasmito E., Sumardi, Ulfah M., Preliminary study on immunomodulatory effect of sarang-semut tubers Myrmecodia tuberosa and Myrmecodia pendens. J Biol. Sci., 2010, 10, 136-141.
    [29] Soeksmanto A., Subroto M.A., Wijaya H., Simanjuntak P., Anticancer activity test for extracts of sarang semut (Myrmecodia pendens) to HeLa and MCM-B2 cells. Pak J Biol sci., 2010, 13, 148-151.
    [30] Supriatno, Antitumor activity of Papua’s Myrmecodia pendans in human oral tongue squamous cell carcinoma cell line through induction of cyclin-dependent kinase inhibitor p27Kip1 and suppression of cyclin E. J Cancer Res. Therap., 2014, 2, 48-53.
    [31] Blatrix R., Bouamer S., Morand S., Selosse M.A., Ant-pant mutualisms should be viewed as symbiotic communities. Plant Signal. Behav., 2009, 4, 554-556.
    [32] Palombo E.A., semple S.J., Antibacterial activity of traditional medicinal plants. J Ethnopharmacol., 2001, 77, 151-157.
    [33] Cowan M.M., Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12, 564–582
    [34] Balunas M.J., Kinghorn A.D., Drug discovery from medicinal plants. Life Sci., 2005, 78, 431- 441.
    [35] Hamsar M.N., Mizaton H.H., Potential of ant-nest plants as an alternative Cancer treatment. J Pharm. Res., 2012, 5, 3063-3066.
    [36] Mathur A., Singh R., Yousuf1 S., Bhardwaj A., Verma S.K., Babu P., Gupta V., Prasad G., Dua V.K., Antifungal activity of some plant extracts against clinical pathogens. Adv. Appl. Sci. Res., 2011, 2, 260-264.
    [37] Bambang B.S., Kumalaningsih S., Susinggih W., Hardoko, Polyphenol Content and antioxidant activities of crude extract from brown algae by various solvents. J. Life Sci. Biomed., 2013, 3, 439-443.
    [38] Burtin P. Nutritional Value of Seaweeds. Electronic J Environ Agri and Food Chem 2003; 2: 498 – 503.
    [39] Gan R.Y., Kuang L., Xu X.R., Zhang Y., Xia E.Q., Song F.L., Li H.B Screening of natural antioxidants from traditional Chinese medicinal plants associated with treatment of rheumatic disease. Molecules, 2010, 15, 5988-5997.
    [40] Maiti K., Mukherjee K., Gantait A., Ahamed H. N., Pada B., Saha, Mukherjee P.K., Enhanced therapeutic benefit of quercetin–phospholipid complex in carbon tetrachloride–induced acute liver injury in rats: A comparative study. Iran. J. Pharmacol. Ther., 2005, 4, 84–90.
    [41] Giacosa A, Janssens J.P., Stockbrugger R., New avenues in cancer prevention. Eur J Cancer Prev., 2003, 12: 247–249.
    [42] Belayachi L., Aceves-Luquero C., Merghoub N., Bakri Y., Mattos S.F.d., Amzazi S., Villalonga P., Screening of north african medicinal plant extracts for cytotoxic activity against tumor cell lines. Eur J Med Plants, 2013, 3, 310-332.
    [43] Lautie E., Quintero R., Fliniaux M.A., Villarreal M-L., Selection methodology with scoring system: Application to Mexican plants producing podophyllotoxin related lignans. J Ethnopharmacol., 2008, 120, 402-412.
    [44] Sumardi, Hertiani, T., Sasmito E., Ant plant (Myrmecodia tuberosa) hypocotyl extract modulates TCD4+ and TCD8+ cell profile of doxorubicin-induced immune-suppressed sprague dawley rats in vivo, Scientia Pharmaceutica. Sci Pharm., 2013, 81, 1057–1069.
    [45] Sujono TA, Munawaroh R, Wijayanti PK, Lestari YP. The protective effect of sarang semut tubers (myrmecodia tuberose) infusion on gentamicin-piroxicam induced nephrotoxicity in rats. Indonesian J Pharm., 2014; 25: 91 – 97.
    [46] Dog L.T., Smart talk on supplements and botanicals. Altern Complem Ther, 2009, 15, 101-102.
    [47] Wendakoon C., Calderon P., Gagnon D., Evaluation of selected medicinal plants extracted in different ethanol concentrations for antibacterial activity against human pathogens. J Med Active Plants, 2012, 1, 60-68.
    [48] Štěrbova D, Matějı́ček D, Vlček J, Kuban V., Combined microwave-assisted isolation and solid-phase purification procedures prior to the chromatographic determination of phenolic compounds in plant materials. Anal. Chim. Acta., 2004, 513, 435-444.
    [49] Xiao W., Han L., Shi B., Microwave-assisted extraction of flavonoids from Radix astragali. Sep. Purif. Technol., 2008, 62, 614-618.
    [50] Basma A.A., Zakari Z., Latha L.Y., Sasidharan S., Antioxidant activity and phytochemical screening of the methanol extracts of Euphorbia hirta L. Asian Pac J Trop Med., 2011, 4, 386-390.
    [51] Michel, T., Destandau, E., Elfakir, C., Evaluation of a simple and promising method for extraction of antioxidants from sea buckthorn (Hippophae rhamnoides L.) berries: Pressurized solvent-free microwave assisted extraction. Food Chem., 2011, 126, 1380-1386.
    [52] Weisz G.M., Kammerer D.R., Carle R., Identification and quantification of phenolic compounds from sun flower (Helianthus annuus L.) kernels and shells by HPLC-DAD/ESI-MS. Food Chem., 2009, 115, 758-765
    [53] Porgali E., Buyuktuncel E, Determination of phenolic composition and antioxidant capacity of native red wines by high performance liquid chromatography and spectrophotometric methods. Food Res. Int., 2012: 45, 145-154.
    [54] Firuzi O., Lacanna A., Petrucci R., Marrosu G., Saso L., Evaluation of the antioxidant activity of flavonoids by “ferric reducing antioxidant power” assay and cyclic voltammetry, Biochimica et Biophysica Acta (BBA) - General Subjects, 2005, 1721, 174-184.
    [55] Liu G., Xu Z., Chen J., Lang G., Tian Q., Shen Y., Chen B., Yao S., On-line strategies for the identification of unknown flavone glycosides in dracocephalum tanguticum maxim. J. Chromatogr. B., 2009, 877, 2545- 2550.
    [56] Perestrelo R, Lu Y, Santos SAO, et al. Phenolic profile of sercial and tinta negra vitis vinifera l. Grape skins by hplc–dad–esi-msn: Novel phenolic compounds in vitis vinifera l. Grape. Food Chem., 2012,135, 94-104.
    [57] Campins-Falco P., Verdu-Andres J. & Bosch-Reig F., H-Point standard additions method for resolution of binary mixtures with simultaneous addition of both analytes. Analytica. Chimica. Acta., 1995, 315, 267-278.
    [58] Martins S., Aguilar C.N., Teixeira J.A., Mussatto S.I., Bioactive compounds (phytoestrogens) recovery from Larrea tridentata leaves by solvents extraction. Sep. Purif. Technol., 2012, 88, 163-167.
    [59] Li, Y., Jiang B., Zhang T., Mu W., Liu J., Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (cph). Food Chem., 2008, 106, 444-450.
    [60] Wang, J., Yuan X., Jin Z., Tian Y., Song H., Free radical and reactive oxygen species scavenging activities of peanut skins extract. Food Chem., 2007, 104, 242-250.
    [61] Horvath C.R., Martos P.A., Saxena P.K., Identification and quantification of eight flavones in root and shoot tissues of the medicinal plant huang-qin (Scutellaria baicalensis georgi) using high-performance liquid chromatography with diode array and mass spectrometric detection. J. Chromatogr. A., 2005, 1062, 199-207.
    [62] Lee J.H., Park K.H., Lee M.H., Kim H.T., Seo W.D., Kim J.Y., Baek I.Y., Jank D.S., Ha T.J., Identification, characterisation, and quantification of phenolic compounds in the antioxidant activity-containing fraction from the seeds of Korean Perilla (Perilla frutescens) cultivars. Food Chem., 2013, 136, 843-852.
    [63] Fernandes I., Nave F., Goncalves R., de Freitas V., Mateus N., On the bioavailability of flavanols and anthocyanins: Flavanol– anthocyanin dimers. Food Chem., 2012, 135, 812-818.
    [64] Appeldoorn M.M., Sanders M., Vincken J.P., Cheynier V., Le Guermeve C., Hollman P.C.H., Gruppen H., Efficient isolation of major procyanidin a-type dimers from peanut skins and b-type dimers from grape seeds. Food Chem., 2009, 117, 713-720.
    [65] Perez-Jimenez J., Torres J.L., Analysis of proanthocyanidins in almond blanch water by HPLC–ESI–QqQ–MS/MS and MALDI–TOF/TOF MS. Food Res. Int., 2012, 49, 798-806.
    [66] Zhao M., Yang B., Wang J., Li B., Jiang Y., Identification of the major flavonoids from pericarp tissues of lychee fruit in relation to their antioxidant activities. Food Chem., 2006, 98, 539-544.
    [67] Lou S.N., Hsu Y.S., Ho C.T., Flavonoid compositions and antioxidant activity of calamondin extracts prepared using different solvents. J Food Drug Anal., 2014; XXX: 1-6.
    [68] Aspe E. & Fernandez K.. The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata bark. Ind Crops prod., 2011, 34, 838-844.
    [69] Onofrejova L., Vašičkova J., Klejdus B., Stratil P., Mišurcova L., Kračmar S., Kopecky J., Vacek J., Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. J Pharm Biomed Anal., 2010, 51, 464-470.
    [70] Santos, D.T. & Meireles, M.A.A., Optimization of bioactive compounds extraction from jabuticaba (Myrciaria cauliflora) skins assisted by high pressure CO2. Innov Food Sci Emerg., 2011, 12, 398-406.
    [71] Gouda, A.A. & Malah, Z.A., Development and validation of sensitive spectrophotometric method for determination of two antiepileptics in pharmaceutical formulations. Spectrochemim Acta A., 2013, 105, 488-496.

    QR CODE