簡易檢索 / 詳目顯示

研究生: 陳培萱
Pei-Hsuan Chen
論文名稱: 操作於低電壓系統之 超低功耗時域智慧型溫度感測器
Ultra-Low Power Time-Domain Counter-Based CMOS Temperature Sensor for Low Voltage Systems
指導教授: 陳伯奇
Po-Ki Chen
口試委員: 盧志文
Chih-Wen Lu
陳筱青
Hsiao-Chin Chen
鍾勇輝
Yung-Hui Chung
陳伯奇
Po-Ki Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 126
中文關鍵詞: 超低功耗次臨界區單點校正智慧型溫度感測器時間至數位轉換器增益可調時間放大器
外文關鍵詞: Ultra-Low Power, Subthreshold Region, One-Point Calibration, Smart Temperature Sensor, Time-to-Digital Converter, Variable Gain Time Amplifier
相關次數: 點閱:263下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來科技日益發展,物聯網成為當代熱門話題之一,是許多國家及公司相以競爭之焦點。因應可攜式設備與消費性電子產品等需求逐日攀升,因此成本低廉且高精度之智慧型溫度感測器佔有重要的一席之地,尤以超低功耗為主要標的。但如何在優異解析度及低功率消耗之間權衡,乃是一大設計挑戰。
    本論文提出一超低功耗時域智慧型溫度感測器架構,透過時間至數位轉換器(Time to Digital Converter, TDC)取代電壓域所需使用的高功率消耗之類比至數位轉換器(Analog to Digital Converter, ADC),搭配一增益可調時間放大器架構(Variable Gain Time Amplifier, VGTA),藉以切換不同應用上所需的解析度和轉換功耗,其效能可如類比至數位轉換器,擁有高解析度及較快速的轉換時間,此外也能藉以執行單點校正以大幅壓低量產成本。
    本溫度感測晶片使用TSMC 0.18 µm CMOS 1P6M 1.8 & 3.3V標準製程實現,晶片核心面積為0.279 mm2。為了應用於低電壓架構如本實驗室之獵能系統(Energy Harvesting System),則供應電壓為0.6 V,在後模擬結果下,本論文溫度感測器之功率消耗約為166 nW,可偵測溫度範圍為0 °C ~ 100 °C,其溫度誤差為+0.318/-0.203 °C。轉換時間為4.04 ms,解析度FoM為0.00749 nJ/K2,每次轉換功耗為0.674 nJ,且不需要任何外部參考電路。


    With the advance of science and technology, the Internet of Things has become booming in the contemporary era. Due to the increasing demand for portable devices and consumer electronic products, low-cost and high-precision smart temperature sensors play an important role in the market, especially for ultra-low power applications. However, the main design challenge is the trade-off between good resolution and low power consumption.
    An ultra-low power time-domain counter-based CMOS temperature sensor is proposed in this thesis, and use counter-based time-to-digital converter (TDC) to replace the high power consumption analog-to-digital converter (ADC) required by the voltage domain temperature sensor. A variable gain time amplifier (VGTA) is included to adjust the resolution and conversion power for different applications. The performance is about the same as ADC-based counterparts. However, it supports one-point calibration to dramatically reduce the cost for mass production.
    The temperature sensor is fabricated in a TSMC 0.18 µm standard CMOS process and consumes a chip area of 0.279 mm2. In order to be applied to on-chip energy harvesting system, supply voltage is set to be 0.6 V. The power consumption is 166 nW with an inaccuracy of +0.318 °C to -0.203 °C over 0 °C to 100 °C range by post-layout simulation. With a conversion time of 4.04 ms, a resolution FoM of 0.00749 nJ/K2 is achieved. The sensor does not require any external reference and consumes 0.674 nJ per conversion.

    摘 要 Abstract 誌 謝 目 錄 圖目錄 表目錄 第1章 緒論 1-1 研究背景與動機 1-2 論文架構 第2章 溫度感測器 2-1 傳統溫度感測元件 2-1-1 熱電偶 2-1-2 熱敏電阻 2-1-3 電阻式溫度感測器 2-1-4 傳統溫度感測元件結論 2-2 積體電路智慧型溫度感測器 2-2-1 電壓域溫度感測器之設計 2-2-2 時域溫度感測器之設計 2-2-3 積體電路智慧型溫度感測器結論 第3章 時間至數位轉換器 3-1 計數器法之時間至數位轉換器 3-2 脈衝寬度拓展法之時間至數位轉換器 3-3 脈衝縮減法之時間至數位轉換器 3-4 游標卡尺法之時間至數位轉換器 3-5 時間至數位轉換器結論 3-5-1 架構分析統整 3-5-2 結論 第4章 電路設計與實現 4-1 整體架構介紹 4-2 溫度感測核心 4-2-1 與絕對溫度成正比例之參考電壓源(PTAT VRG) 4-2-2 與溫度恆定之參考電壓源(CWT VRG) 4-3 電壓至電流轉換器 4-3-1 雙迴路型PTAT電壓至電流轉換器 4-3-2 雙迴路型CWT電壓至電流轉換器 4-3-3 雙級運算放大器 4-4 電流至頻率轉換器 4-5 時間至數位轉換器 4-5-1 架構介紹 4-5-2 可變增益時間放大器(Variable Gain Time Amplifier) 4-5-3 計數器(Counter) 4-6 校正模式 4-6-1 單點恆溫校正(One-Point Calibration) 4-6-2 雙點恆溫校正(Two-Point Calibration) 4-6-3 批次校正(Batch Calibration) 4-6-4 校正模式結論 第5章 電路設計考量與模擬 5-1 電路設計流程 5-1-1 類比區塊設計(Analog Block Design) 5-1-2 數位區塊設計(Digital Block Design) 5-1-3 電路整合考量與劃分 5-2 佈局考量 5-2-1 隨機不匹配誤差 5-2-2 系統不匹配誤差 5-2-3 多重元件佈局圖 5-2-4 訊號線佈局考量 5-3 電路後模擬 5-3-1 溫度感測核心 5-3-2 電壓至電流轉換器 5-3-3 電流至頻率轉換器 5-3-4 時間至數位轉換器 5-4 溫度感測誤差模擬 5-4-1 批次型校正 5-4-2 逐顆型校正 5-5 晶片佈局圖 5-6 量測考量 第6章 結論與未來展望 6-1 效能比較 6-2 結論與外來展望 參考文獻

    [1] N. DiGiose(2017/10)。六種智慧家庭必備感測器。檢自: https://www.edntaiwan.com/20171013nt02-smarthome-sensor/.
    [2] S. M. 資訊中心(2018/10)。在智慧應用領域中溫濕度感測器的應用。檢自: http://3smarket-info.blogspot.com/2018/10/blog-post_25.html.
    [3] C. Poirier, R. McGowen, C. Bostak, and S. Naffziger, "Power and temperature control on a 90nm Itanium/sup /spl reg//-family processor," in ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005.,2005, pp. 304-305 Vol. 1
    [4] C. Mathas(2011/10)。溫度感測器基礎知識。檢自: https://www.digikey.tw/zh/articles/temperature-sensors-the-basics.
    [5] C.-C. Cheng, W.-N. Cheng, Y.-S. Chiu, and W.-J. Cheng(2019/10)。加速規與溫度感測器Accelerometer and Temperature Sensor。檢自: https://www.tiri.narl.org.tw/Publication/InstTdy_Full/2304?PubId=221.
    [6] N. Instruments(2020/06)。溫度感測器概述:量測原理、種類與規格、特性概述。檢自:https://www.ni.com/zh-tw/innovations/white-papers/06/overview-of-temperature-sensors.html.
    [7] B. Schweber(2019/01)。使用固態技術在 IoT 應用中有效感測溫度。檢自: https://www.digikey.tw/zh/articles/effectively-sense-temperature-iot-applications--solid-state-technology.
    [8] Bird(2019/04)。【Maker電子學】淺談負溫度係數熱敏電阻的原理與應用。 https://makerpro.cc/2019/04/the-principles-and-application-of-ntc-thermistor/.
    [9] P. Krummenacher and H. Oguey, "Smart temperature sensor in CMOS technology," Sensors and Actuators A: Physical, vol. 22, no. 1, pp. 636-638, 06/01 1990
    [10] A. Bakker, "CMOS smart temperature sensors - an overview," in SENSORS, 2002 IEEE,2002, vol. 2, pp. 1423-1427 vol.2
    [11] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill, 2017.
    [12] K. E. Kuijk, "A precision reference voltage source," IEEE Journal of Solid-State Circuits, vol. 8, no. 3, pp. 222-226, 1973
    [13] D. Hilbiber, "A new semiconductor voltage standard," in 1964 IEEE International Solid-State Circuits Conference. Digest of Technical Papers,1964, vol. VII, pp. 32-33
    [14] A. Bakker and J. H. Huijsing, "Micropower CMOS temperature sensor with digital output," IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 933-937, 1996
    [15] M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing, "A CMOS smart temperature sensor with a 3/spl sigma/ inaccuracy of /spl plusmn/0.1/spl deg/C from -55/spl deg/C to 125/spl deg/C," IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2805-2815, 2005
    [16] A. L. Aita, M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing, "A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25°C (3σ) from −70°C to 130°C," in 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers,2009, pp. 342-343,343a
    [17] F. Sebastiano, L. J. Breems, K. A. A. Makinwa, S. Drago, D. M. W. Leenaerts, and B. Nauta, "A 1.2V 10µW NPN-based temperature sensor in 65nm CMOS with an inaccuracy of ±0.2°C (3s) from −70°C to 125°C," in 2010 IEEE International Solid-State Circuits Conference - (ISSCC),2010, pp. 312-313
    [18] K. A. A. Makinwa, "Designing smart temperature sensors in standard CMOS," in 2008 IEEE International Electron Devices Meeting,2008, pp. 1-1
    [19] R. J. Widlar, "New developments in IC voltage regulators," IEEE Journal of Solid-State Circuits, vol. 6, no. 1, pp. 2-7, 1971
    [20] K. Kim, H. Lee, S. Jung, and C. Kim, "A 366kS/s 400uW 0.0013mm2 frequency-to-digital converter based CMOS temperature sensor utilizing multiphase clock," in 2009 IEEE Custom Integrated Circuits Conference,2009, pp. 203-206
    [21] M. Sasaki, M. Ikeda, and K. Asada, "A Temperature sensor with an inaccuracy of -1/+0.8°C using 90-nm 1-V CMOS for online thermal monitoring of VLSI circuits," IEEE Transactions on Semiconductor Manufacturing, vol. 21, no. 2, pp. 201-208, 2008
    [22] I. M. Filanovsky and A. Allam, "Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 48, no. 7, pp. 876-884, 2001
    [23] C. Poki, C. Chun-Chi, T. Chin-Chung, and L. Wen-Fu, "A time-to-digital-converter-based CMOS smart temperature sensor," IEEE Journal of Solid-State Circuits, vol. 40, no. 8, pp. 1642-1648, 2005
    [24] K. Arabi and B. Kaminska, "Built-in temperature sensors for on-line thermal monitoring of microelectronic structures," in Proceedings International Conference on Computer Design VLSI in Computers and Processors,1997, pp. 462-467
    [25] P. E. A. D. R. Holberg, CMOS Analog Circuit Design. Oxford Univ Press USA, 2011.
    [26] P. Ituero, J. L. Ayala, and M. Lopez-Vallejo, "Leakage-based On-Chip Thermal Sensor for CMOS Technology," in 2007 IEEE International Symposium on Circuits and Systems,2007, pp. 3327-3330
    [27] T. A. D. a. Z. Ciccone, Digital Integrated Circuits. New York: Wiley, 1996.
    [28] K. Souri, Y. Chae, and K. Makinwa, "A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15°C (3σ) from −55 to 125°C," in 2012 IEEE International Solid-State Circuits Conference,2012, pp. 208-210
    [29] E. Raisanen-Ruotsalainen, T. Rahkonen, and J. Kostamovaara, "A low-power CMOS time-to-digital converter," IEEE Journal of Solid-State Circuits, vol. 30, no. 9, pp. 984-990, 1995
    [30] K. Maatta and J. Kostamovaara, "A high-precision time-to-digital converter for pulsed time-of-flight laser radar applications," IEEE Transactions on Instrumentation and Measurement, vol. 47, no. 2, pp. 521-536, 1998
    [31] E. Raisanen-Ruotsalainen, T. Rahkonen, and J. Kostamovaara, "An integrated time-to-digital converter with 30-ps single-shot precision," IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1507-1510, 2000
    [32] R. Nutt, "Digital Time Intervalometer," Review of Scientific Instruments, vol. 39, no. 9, pp. 1342-1345, 1968/09/01 1968
    [33] C. Poki, L. Shen-Iuan, and W. Jingshown, "Highly accurate cyclic CMOS time-to-digital converter with extremely low power consumption," Electronics Letters, vol. 33, no. 10, pp. 858-860, 1997
    [34] T. Otsuji, "A picosecond-accuracy, 700-MHz range, Si bipolar time interval counter LSI," IEEE Journal of Solid-State Circuits, vol. 28, no. 9, pp. 941-947, 1993
    [35] R. B. Staszewski, D. Leipold, H. Chih-Ming, and P. T. Balsara, "TDC-based frequency synthesizer for wireless applications," in 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers,2004, pp. 215-218
    [36] P. Dudek, S. Szczepanski, and J. V. Hatfield, "A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line," IEEE Journal of Solid-State Circuits, vol. 35, no. 2, pp. 240-247, 2000
    [37] S. Jeong, Z. Foo, Y. Lee, J. Sim, D. Blaauw, and D. Sylvester, "A Fully-Integrated 71 nW CMOS Temperature Sensor for Low Power Wireless Sensor Nodes," IEEE Journal of Solid-State Circuits, vol. 49, no. 8, pp. 1682-1693, 2014
    [38] X. Wang, P. P. Wang, Y. Cao, and P. P. Mercier, "A 0.6V 75nW All-CMOS Temperature Sensor With 1.67m°C/mV Supply Sensitivity," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 9, pp. 2274-2283, 2017
    [39] D. Cordova, A. C. d. Oliveira, P. Toledo, H. Klimach, S. Bampi, and E. Fabris, "A 0.3 V, high-PSRR, picowatt NMOS-only voltage reference using zero-VT active loads," in 2016 29th Symposium on Integrated Circuits and Systems Design (SBCCI),2016, pp. 1-6
    [40] C. Galup-Montoro, M. C. Schneider, and M. B. Machado, "Ultra-Low-Voltage Operation of CMOS Analog Circuits: Amplifiers, Oscillators, and Rectifiers," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 12, pp. 932-936, 2012
    [41] Y. Tsividis, Operation and Modeling of the MOS Transistor. 2nd ed. McGraw-Hill, 1998.
    [42] Y. Wang, R. Zhang, Q. Sun, and H. Zhang, "A 0.5 V, 650 pW, 0.031%/V Line Regulation Subthreshold Voltage Reference," in ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC),2018, pp. 82-85
    [43] P. Chen, S. Chen, Y. Shen, and Y. Peng, "All-Digital Time-Domain Smart Temperature Sensor with an Inter-Batch Inaccuracy of -0.7°C~+0.6°C after One-Point Calibration," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 5, pp. 913-920, 2011
    [44] J. Yuan and C. Svensson, "High-speed CMOS circuit technique," IEEE Journal of Solid-State Circuits, vol. 24, no. 1, pp. 62-70, 1989
    [45] A. Hastings, The Art of Analog Layout. NJ Prentice Hall, 2001.
    [46] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching properties of MOS transistors," IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1433-1439, 1989
    [47] D. Xin, H. Chengming, X. Hanqing, C. Degang, and R. Geiger, "An N/sup th/ order central symmetrical layout pattern for nonlinear gradients cancellation," in 2005 IEEE International Symposium on Circuits and Systems,2005, pp. 4835-4838 Vol. 5
    [48] T. Someya, A. K. M. M. Islam, T. Sakurai, and M. Takamiya, "An 11-nW CMOS Temperature-to-Digital Converter Utilizing Sub-Threshold Current at Sub-Thermal Drain Voltage," IEEE Journal of Solid-State Circuits, vol. 54, no. 3, pp. 613-622, 2019
    [49] K. Yang et al., "9.2 A 0.6nJ −0.22/+0.19°C inaccuracy temperature sensor using exponential subthreshold oscillation dependence," in 2017 IEEE International Solid-State Circuits Conference (ISSCC),2017, pp. 160-161
    [50] L. Yu-Shiang, D. Sylvester, and D. Blaauw, "An ultra low power 1V, 220nW temperature sensor for passive wireless applications," in 2008 IEEE Custom Integrated Circuits Conference,2008, pp. 507-510
    [51] K. Pelzers, H. Xin, E. Cantatore, and P. Harpe, "A 2.18-pJ/conversion, 1656-μm² Temperature Sensor With a 0.61-pJ·K² FoM and 52-pW Stand-By Power," IEEE Solid-State Circuits Letters, vol. 3, pp. 82-85, 2020
    [52] K. M. Chang, Y. J. Lin, C. L. Wei, and S. J. Chang, "Resistor-Based Temperature Sensing Chip with Digital Output," in 2020 International Symposium on VLSI Design, Automation and Test (VLSI-DAT),2020, pp. 1-4

    無法下載圖示 全文公開日期 2026/08/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE