簡易檢索 / 詳目顯示

研究生: 鄭欽豪
Ching-hao Cheng
論文名稱: 以Sol-gel法製備奈米級銅鈰觸媒及其應用於富氫情況下水煤氣轉移反應以及一氧化碳氧化反應之研究
Nano-Sized Cu/Ce catalyst prepared by sol-gel method and its application in water gas shift reaction and CO oxidation under rich hydrogen
指導教授: 蕭敬業
Ching-yeh Shiau
口試委員: 陳郁文
Yu-Wen Chen
劉端祺
Tuan-qi Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 80
中文關鍵詞: 富氫下水煤氣轉移反應富氫下一氧化碳氧化反應溶膠凝膠法銅鈰觸媒
外文關鍵詞: water gas shift reaction under rich hydrogen, sol-gel method, CO oxidation under rich hydrogen, copper/cerium catalysts
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的在於探討不同比例之奈米級銅鈰觸媒,並添加不同含量的鋅對富氫下水煤氣轉移反應以及一氧化碳氧化反應的影響。觸媒以sol-gel法製備,其中選用PAA、citric acid與urea為凝膠溶劑,並與共沈澱法作比較。鍛燒溫度以500℃、600℃與700℃做比較。在觸媒特性的研究上,則採用BET、TPR、XRD、TEM等儀器來進行分析。
    由BET分析得知,添加鋅可增加觸媒總表面積,以銅鋅比例3/12最佳。TPR結果顯示,添加鋅時,銅的還原波峰有向高溫偏移的現象。sol-gel法製備觸媒中,以PAA所製備的觸媒分散性銅較多,使用citric acid所製備的觸媒其次,另外以urea與共沈澱法所製備的觸媒,還原溫度較其他兩種高出20-35℃。TEM結果得知以sol-gel製備法所製備的觸媒皆為奈米級觸媒。
    富氫下水煤氣轉移反應活性之實驗結果顯示,sol-gel法製備的奈米級銅鈰系列觸媒活性皆高於共沈澱法所製備的觸媒,其中使用PAA凝膠溶劑製備的觸媒最好,urea最差。在銅鈰比例及添加鋅方面,銅鈰比例3/10的觸媒活性表現最佳,而添加鋅顯示觸媒的活性有明顯的提高,其中以銅鋅鈰比例3/12/10的觸媒活性最好。鍛燒溫度方面,顯示sol-gel法製備的觸媒在較低溫鍛燒對觸媒的活性較有利。在富氫選擇性一氧化碳氧化反應方面,以銅鈰比例3/10的觸媒表現較佳的活性。而添加鋅的研究中,顯示添加鋅並無助於提升銅鈰觸媒的活性,但有利於選擇率的提升。


    The major purpose of this study is to investigate the effect of differential ratio of nano copper/cerium catalysts and added differential Zn loading for water gas shift reaction and CO oxidation under rich hydrogen. The catalysts were prepared by sol-gel method, choosed PAA, citric acid and urea as gelatinous reagent and compared with co-precipitation. The calcination temperature was 500℃ and compared with 600℃ and 700℃. Catalysts property were analyzed by Nitrogen physical adsorpyion(BET), X-ray diffraction(XRD), Temperature program reduction(TPR) and Transmission electron microscope(TEM).
    According to BET, adding zinc increase the total suface of catalysts, especially the copper/zinc ratio 3/12 is best. Results of TPR indicate that adding zinc make the copper reduction peak shift to high temperature. In the sol-gel method, the dispersed copper present most in PAA method, and that in the citric acid method is secondary. Reduction peak Of the catalysts prepared by urea and co-precipitation is higher than the other two methods. The results of TEM show that the catalysts prepared by sol-gel method are nanometer.
    For Water gas shift reaction under rich hydrogen, the active of Nano-Sized copper/zinc series catalysts prepared by sol-gel method is higher than co-precipitation. Among sol-gel method, the catalysts prepared by PAA gelatinous reagent are best, and urea are worst. For copper/cerium ratio and adding zinc, the active of copper/cerium ratio 3/10 is best, and adding zinc increases the active apparently, especially copper/zinc/cerium ratio 3/12/10. For calcination temperature, the catalysts prepared by sol-gel method show more active under lower temperature. For selective CO oxidation under rich hydrogen, the active of copper/cerium ratio 3/10 is better. Adding zinc investigation indicate that it is helpless for increasing active of copper/cerium catalysts, but it does help for increasing selectivity.

    目錄 摘要 I 目錄 III 圖表索引 V 符號說明 VII 第一章 緒論 1 第二章 文獻回顧 4 2.1 水煤氣轉移反應(WATER GAS SHIFT REACTION) 4 2.2 氧化鈰的添加對CO氧化反應之影響 11 2.3 溶膠─凝膠法(SOL-GEL METHOD) 18 第三章 實驗方法與步驟 26 3.1 實驗藥品、氣體與儀器設備 26 3.1.1 藥品 26 3.1.2 氣體 27 3.1.3 儀器設備 27 3.2 觸媒的製備 29 3.2.1 檸檬酸溶膠凝膠法 29 3.2.2 PAA溶膠凝膠法 29 3.2.3 尿素水解法 30 3.2.4 共沈澱法 31 3.3 觸媒的特性鑑定 32 3.3.1 穿透式顯微鏡 (TEM) 32 3.3.2 BET表面積測定與孔徑大小分佈測定 33 3.3.3 愛克斯光繞射分析(XRD) 36 3.3.4 程式升溫還原(TPR) 38 3.4 觸媒反應裝置與反應步驟 39 3.4.1 反應裝置 39 3.4.2 反應條件 40 3.4.3 反應步驟 41 3.4.4 轉化率的計算 42 第四章 結果與討論 44 4.1 觸媒鑑定 44 4.1.1 BET表面積與平均孔徑 44 4.1.2 X-Ray繞射分析(XRD) 46 4.1.3 程式升溫還原 (TPR) 50 4.1.4 穿透式顯微鏡 (TEM) 56 4.2 觸媒反應活性 58 4.2.1銅鈰比例對富氫下水煤氣轉移反應的影響 59 4.2.2 添加劑Zn對富氫下水煤氣轉移反應的影響 60 4.2.3 鍛燒溫度對觸媒的影響 62 4.2.4 製備方法對富氫下水煤氣轉移反應的影響 63 4.2.5 觸媒在富氫下水煤氣轉移反應中穩定度之探討 64 4.3 富氫下選擇性一氧化碳氧化反應 65 4.3.1 銅鈰比例對富氫下選擇性一氧化碳氧化反應的影響 66 4.3.1 添加劑Zn對富氫下選擇性一氧化碳氧化反應的影響 68 第五章 結論 72 參考文獻…………..…………………………………………………..74 圖表索引 圖2- 1螢石型氧化物之結構 13 圖3- 1 表面積與孔隙測定儀 36 圖3- 3 反應裝置圖 43 表4- 1 溶膠凝膠法銅系列觸媒之BET表面積與平均孔徑* 45 表4- 2不同觸媒製備方法製備CU/ZN/CE(3/12/10)觸媒之BET表面積與平均孔徑* 45 圖4- 1 XRD SPECTRUM FOR CUCE SERIES CATALYST. 47 圖4- 2 XRD SPECTRUM FOR CUZNCE SERIES CATALYST. 48 圖4- 3 XRD SPECTRUM OF CUZNCE (3/12/10) CATALYST AT DIFFERENT CALCINATION TEMPERATURE 49 圖4- 4 XRD SPECTRUM OF CUZNCE (3/12/10) CATALYST PREPARED BY DIFFERENT METHOD 50 圖4- 5 TPR SPECTRUM FOR CUCE SERIES CATALYST. 52 圖4- 6 TPR SPECTRUM FOR CUZNCE SERIES CATALYST. 53 圖4- 7 TPR SPECTRUM FOR CUZNCE(3/12/10) CATALYST PREPARED BY DIFFERENT CALCINATION TEMPERATURE 54 圖4- 8 TPR SPECTRUM FOR CUZNCE(3/12/10) CATALYST PREPARED BY DIFFERENT METHOD 56 圖4- 9 以PAA溶膠凝膠法製得之CU/ZN/CE(3/12/10)觸媒TEM圖 57 圖4- 10 以CITRIC ACID溶膠凝膠法製得之CU/ZN/CE(3/12/10)觸媒TEM圖 57 圖4- 11 以UREA溶膠凝膠法製得之CU/ZN/CE(3/12/10)觸媒TEM圖 58 圖4- 12 CATALYST ACTIVITY OF CU/CE SERIES CATALYST 60 圖4- 13 CATALYST ACTIVITY OF CU/ZN/CE SERIES CATALYST 62 圖4- 14 CATALYST ACTIVITY OF CU/ZN/CE(3/12/10) CATALYST AT DIFFERENT CALCINATION TEMPERATURE 63 圖4- 15 CATALYST ACTIVITY OF CU/ZN/CE(3/12/10) CATALYSTS AT DIFFERENT PREPARION METHOD 64 圖4- 16 EFFECT OF TIME ON CO CONVERSION 65 圖4- 17 VARITION OF THE CO AND OF THE SELECTIVITY WITH THE REACTION TEMPERATURE FOR SELECTIVE OXIDATION OF CO OVER THE CUCE SERIES CATALYST. 68 圖4- 18 VARITION OF THE CO AND OF THE SELECTIVITY WITH THE REACTION TEMPERATURE FOR SELECTIVE OXIDATION OF CO OVER THE CUZNCE SERIES CATALYST. 71

    Aboukais, A., Galtayries, A., Abi-Aad, E., Courcot, D. and Grimblot, “Spectroscopic and surface potential variations study of a CuCe oxide catalyst using H2S as a probe molecule”, Colloids and Surfaces A, 154, 335(1999).

    Amadeo, N. E. and Laborde, M. A., “Hydrogen production from the low-temperature water—gas shift reaction: kinetics and simulation of the industrial reactor”, Int. J. Hydrogen Energy, 20, 949(1995a).

    Amadeo, N., Cerrella, E., Laborde, M. and Pennella, F., “Kinetics of the low-temperature water—gas shift reaction on a copper/zinc oxide/alumina catalyst”, Let. Am. Appl. Res., 25, 21(1995b).

    Andreeva, D., Idakiev, V., Tabakova, T., Andreev, A. and Giovannoli, R., “Low-temperature water-gas shift reaction on Au/α-Fe2O3 Catalyst”, Applied Catalysis A: General, 134, 275(1996).

    Avgouropoulos, G., Ioannides, T., Papadopoulou, Ch., Batista, J., Hocevar, S. and Matralis, H. K., “A comparative study”

    Bethke, G. K. and Kung, H. H., “Selective CO oxidation in a hydrogen-rich stream over Au/γ-Al2O3 catalysts”, Appl. Catal. A:General, 194, 43(2000).

    Bickford, E. S., Velu, S. and Song, C., “Nano-structured CeO2 supported Cu-Pd bimetallic catalysts for the oxygen-assisted water-gas-shift reaction”, Catalysis Today, 99, 347(2005).

    Brinker, C. J. and Scherer, G. W., “Sol-Gel Science The Physics and Chemistry of Sol-Gel Processing”, Academic Press Inc., (1990).

    Bunluesin, T., Gorte, R. J. and Graham, G. W., “Studies of the Water—Gas-Shift Reaction on Ceria-Supported Pt, Pd, and Rh: Implications for Oxygen-Storage Properties”, Appl. Catal., 15, 107(1998).

    Campbell, C. T. and Daube, K. A., “A Surface Science Investigation of the Water-Gas Shift Reaction on Cu(111)”, J. Catal., 104, 109(1987).

    Chen, P. L. and Chen, I. W., “Role of Defect Interaction in Boundary Mobility and Cation Diffusivity of CeO2”, J. Am. Ceram. Soc., 77, 191(1994).

    Cho, B. K., “Chemical Modification of Catalyst Support for Enhancement of Transient Catalytic Activity : Nitric Oxide Reduction by Carbon Monoxide over Rhodium”, J.Catal. 131, 74(1991).

    Grenoble, D. C., Estadt, M. M. and Ollis, D. F., “The Chemistry and Catalysis of the Water Gas Shift Reaction”, J. catal., 67, 90(1981).

    Haruta, M., “Size- and support-dependency in the catalysis of gold”, Catal. Today, 36, 153(1997).

    Hench, L. L. and West, J. K., “The Sol-Gel Process”, Chem. Rev., 90, 33(1990).

    Huang, T. J. and Tsai, D. H., “Activity behavior of samaria-doped ceria-supported copper oxide catalyst and effect of heat treatments of support on carbon oxidation”, Applied Catalysis A:General, 223, 1(2001).

    Huang, T. J. and Yu, T. C. and Chang, S. H., “Effect of Calcination Atmosphere on CuO/γ-Al2O3 Catalyst for Carbon Monoxide Oxidation”, Applied Catalysis, 52, 157(2001)

    Hurst, M. W., Gentry, S. J., Health, A. J. and McNicol, B. D., “Temperature-Programmed Reduction”, Catal. Rev. Sci. Eng., 24, 233(1982).

    Kakihana, M., “Sol-Gel Preparation of High Temperature Superconducting Oxides”, J. Sol-Gel Sci. Tech., 6, 7(1996).

    Kang, M., Song, M. W. and Lee, C. H., “Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts”, Applied Catalysis A:General, 251, 143(2003).

    Klein, L. C., “Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes”, Noyes Publication, (1987).

    Kocjan, R., “Silica gel modified with Zincon as a sorbent preconcentration or elimination of trace metals”, Analyst, 119, 8(1994).

    Koryabkina, N. A., Phatak, A. A., Ruettinger, W. F., Farrauto, R. J. and Ribeiro, F. H., “Determination of Kinetic parameters for the water—gas shift reaction on copper catalysts under realistic conditions for fuel cell applications”, J. catal., 217, 233(2003).

    Kumar, S. and Messing, G. L., “Synthesis of Barium Titanate by a Basic Ph Pechini Process”, Mater. Res. Soc. Symp. Proc., 271, 95(1992).

    Kung, H. H. and Ko, E. I., “Preparation of oxide catalysts and catalyst supports- a review of recent advances”, The Chemical Engineering Journal, 64, 2(1996).

    Larsson, P. O. and Andersson, A., ”Oxides of copper,ceria promoted copper, manganese and copper manganese on Al2O3 for the combusion of CO, ethyl acetate and ethanol”, Appl. Catal. B., 24, 175(2000).

    Lessing, P. A., “Mixed-Cartion Oxide Powders via Polymeric Precursors”, Am. Ceram. Soc. Bull., 68, 5(1989).

    Li, Y., Fu, Q. and Flytzani-Stephanopoulos, M., “Low-temperature water- gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts”, Applied catalysis B: Environmental, 27, 179(2000).

    Liu, W. and Maria F. S., “Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalystsⅠ. catalyst composition and activity”, J. of Catal., 153, 304(1995).

    Liu, W. and Maria F. S., “Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalystsⅡ. catalyst characterization and reaction kinetics”, J. of Catal., 153, 317(1995).

    Liu, W. and Maria F. S., “Transition metal-promoted oxidation catalysis by fluorite oxides:A study of CO oxidation over Cu-CeO2”, The Chem. Eng. Journal, 64, 283(1996).

    Loof, P., Kasemo, B., Andersson, S. and Frestan,A., ”Influence of Ceria on the Interaction of CO and NO with Highly Dispersed Pt and Rh”, J. Catal., 130, 181(1991).

    Luengnaruemitchai, A., Osuwan, S. and Gulari, E., “Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2 and Au/Fe2O3 catalysts”, Catalysis Communications, 4, 215(2003).

    Lund, C. R. F., “Water Gas Shift Kinetics over Iron Oxide Catalysts at Membrane Reactor Conditions”, Final Report to the U.S. Department of Energy; Grant DE-FG26-99FT40590, Aug(2002).

    Marcilly, C., Courty, P. and Delmon, B., “Preparation of Highly Dispersed Mixed Oxides and Oxide Solide Solutions by Pyrolysis of Amorphous Organic Precursors”, J. Am. Ceram. Soc., 53, 1(1970).

    Park, J. W., Jeong, J. H., Yoon, W. L. and Rhee, Y. W., “Selective oxidation of carbon monoxide in hydrogen-rich processor for proton exchange membrane fuel cells”, Journal Power Sources, 132, 18(2004).

    Pechini, M. P., “Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor”, U. S. Pat., No. 3 330 697, Jul. 11(1967).

    Pfau, A. and Schierbaum, K. D., “The Electronic Structure of Stoichiometric and Reduced CeO2 Surface: an XPS, UPS and HREELS study”, Surf. Sci., 321, 71(1994).

    Pierre, A. C. and Uhlmann, D. R., “Gelation of Aluminum Hydroxide sols”, Journal of the American Ceramic Society, 70, 1(1987).

    Qi, X. and Flytzani-Stephanopoulos, M., “Activity and Stability of Cu—CeO2 Catalysts in High-Temperature Water—Gas Shift for Fuel-Cell Applications”, Ind. Eng. Chem. Res., 43, 3055(2004).

    Rhodes, C., Hutchings, G. J. and Ward, A. M., “Water—gas shift reaction: finding the mechanistic boundary”, Catalysis Today, 23, 43(1995).

    Saito, M., Wu J., Tomoda, K., Takahara, I. and Murata, K., “Effects of ZnO contained in supported Cu-based catalysts on their activities for several reactions”, Catalysis Letters, 83, 1(2002).

    Sakurai, H., Ueda, A., Kobayashi, T. and Haruta, M., “Low-temperature water-gas shift reaction over gold deposited on TiO2”, Chem. Commun., 3, 271(1997).

    Sanchez, M. G. and Gazquez, J. L., “Oxygen Vacancy Model in Strong Metal-Support Interaction”, Journal of Catalysis, 140, 120(1987).

    Sayle, T. X. T., Parker, S. C. and Catlow, C. R. A., “The Role of Oxygen Vacancies on Ceria Surface in the Oxidation of Carbon Monoxide”, Surf. Sci., 316, 329(1994).

    Serre, C., Garin, F. and Marie, G., ”Reactivity of Pt/Al2O3 and Pt-CeO2/Al2O3 Catalysts for the Oxidation of Carbon Monoxide by Oxygen: II. Influence of the Pretreatment Step on the Oxidation Mechanism”, J.Catal., 141, 9(1993).

    Shan, W., Luo, M., Ying, P., Shen, W. and Li, C., “Reduction property and catalytic activity of Ce1-XNXO2 mixed oxide catalysts for CH4 oxidation”, Applied Catalysis A:General, 246, 1(2003).

    Subbarao, E. C. and Maiti, H. S., “Solid Electrolytes with Oxygen Ion Conduction”, Solid State Ionics, 11, 317(1984).

    Sun, Y. K., Oh, I. H. and Hong, S. A., “Synthesis of ultrafine LiCoO2 powders by the sol-gel method”, Journal of Materials Science, 31, 3617(1996).

    Sun, Y. K., Oh, I. H. and Kim, K. Y., “Synthesis of Spinel LiMn2O4 by the Sol-Gel Method for a Cathode-Active Material in Lithium Secondary Batteries”, Ind. Eng. Chem. Res., 36, 4839(1997).

    Tai, L. W. and Lessing, P. A., “Modified resin─intermediate processing of perovskite powders:Part Ⅰ. Optimization of polymeric precursors”, J. Mater. Res., 7, 2(1992).

    Tai, L. W. and Lessing, P. A., “Modified resin - intermediate processing of perovskite powders:Part Ⅱ. Processing for fine, nonagglomerated Sr-doped lanthanum chromite powders”, J. Mater. Res., 7, 2(1992).

    Tanaka, Y., Takeguchi, T., Kikuchi, R. and Eguchi, K., “Influence of preparation method and additive for Cu-Mn spinel oxide catalyst on water gas shift reaction of reformed fuels”, Applied Catalysis A: General,279, 59(2005).

    Tanaka, Y., Utaka, T., Kikuchi, R., Sasaki, K. and Eguchi, K., “Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels”, Applied Catalysis A: General, 242, 287(2003).

    Tang, X., Zhang, B., Li, Y., Xu, Y., Xin, Q. and Shen, W., “Carbon monoxide oxidation over CuO/CeO2 catalysts”, Catalysis Today, 93, 191(2004).

    Wang, X. and Gorte, R. J., “The effect of Fe and other promoters on the activity of Pa/ceria for the water-gas shift reaction”, Applied Catalysis A: General, 247, 157(2003).

    Fu, Q., Weber, A. and Flytzani-Stephanopoulos, M., “Nanostructured Au-CeO2 Catalyst for Low-Temperature Water-Gas Shift”, Catal. Lett., 77, 87(2001).

    Xu, S. and Wang, X., “Highly active and coking resistant Ni/CeO2-ZrO2 catalyst for partial oxidation of methane”, Fuel, 84, 563(2005).

    Yebin, X. and He, Y., “Polymeric precursor sythesis of Ba6-3xSm8+2xTi18O54 ceramic powder”, Ceram. Int., 28, 1(2002).

    Yebin, X. and He, Y., “Synthesis of Ba2Ti9O20 via Ethylenediaminetetraacetic Acid Precursor”, J. Mater. Res., 16, 4(2001).

    Yebin, X., “Preparation of Ba6-3xNd8+2xTi18O54 via Ethylenediaminetetraacetic Acid Precursor”, J. Am. Ceram. Res., 83, 11(2000).

    Yoda, S., Ohshima, S., Kamiya, K., Kawai A., Uchida, K., Gotoh, A. and Ikazaki, F., “Effects of ethanolamines catalysts on properties and microstructures of silica aerogels”, Journal of Non-Crystalline Solids, 208, 191(1996).

    Yue, Z., Li, L., Zhou, J., Zhang, H. and Gui, Z., “Preparation and Characterization of NiCuZn Ferrite Nanocrystalline Powders by Auto-Combustion of Nitrate-Citrate Gels”, Materials Science and Engineering, B64, 68(1999).

    Yung, F. Y. Y., ”The Oxidation of CO and Hydrocarbons over Noble Metal Catalysts”, J. Catal., 87, 152(1984).

    Zhao, S. and Gorte, R. J., “The activity of Fe-Pd alloys for the water-gas shift reaction”, Catalysis Letters, 92, 1(2004).

    Zheng, X. C., Wang, S. P., Zhang, S. M., Wang, S. R., Huang, W. P. and Wu, S. H., “Characterization and CO oxidation behavior of CuO/CeO2 catalysts”, React. Kinet. Catal. Lett., 84, 29(2005).

    蔡凱紋,碩士論文,國立中央大學(1997)。

    蔣孝澈,“溶凝膠製作與應用專輯”,化工,第46卷,第5期,p12(1999)。

    王偉洪,“溶凝膠技術與紡織品改質”,化工,第46卷,第127期,p180(2003)。

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE