簡易檢索 / 詳目顯示

研究生: 劉彥佐
Yan-Tzuo Liu
論文名稱: 不同型態SBA-15擔載鎳銅觸媒於乙醇蒸氣重組催化反應之研究
Study of Different Pore Structure of SBA-15 Supported NiCu Catalysts toward Catalytic Ethanol Steam Reforming Reaction
指導教授: 黃炳照
Bing-joe Hwang
口試委員: 周澤川
Tse-chuan Chou
王復民
Fu-ming Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 170
中文關鍵詞: 溶膠凝膠法乙醇蒸氣重組反應介孔材料SBA-15小板狀NiCuMgOCaO
外文關鍵詞: Sol-gel method, steam reforming of ethanol reaction (SRE), mesoporous material, SBA-15, platelet, Ni, Cu, MgO, CaO
相關次數: 點閱:314下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用溶膠凝膠法於規則介孔SBA-15材料之限制空間內製備NiCu奈米粒子,所合成之奈米粒子較一般方式小,並能均勻分散至限制空間內且無阻塞問題,即使高負載量之下仍能維持此特性(平均粒徑由< 3 nm(負載量為10 wt%)些微增加至3.5 nm(負載量20 wt%))。所合成之NiCu/SBA-15觸媒對乙醇蒸氣重組反應(SRE)有良好之產氫效率,當Ni、Cu負載量各為5 wt%,水醇莫耳比為6:1,WHSV=1.66 h-1,觸媒重量0.05 g的反應條件,於600 ℃下,乙醇轉化率可達100%,H2選擇率為70.4%,CO2選擇率為22.4%,CO選擇率為6.4%,CH4選擇率為0.8%。
    另一方面,不同結構SBA-15對於乙醇蒸氣重組反應穩定度之有顯著之影響,吾人試著將SBA-15(傳統形狀為棒狀)做成短孔道長度(小板狀)以及擴大其孔徑。結果發現確實能延長觸媒穩定度,再搭配積碳實驗測試結果,推論是由於這些結構的改變能減緩反應所產生之積碳堵住孔道,可有效延長觸媒催化活性。以乙醇轉化率100%開始下降時間點來看,棒狀SBA-15為5小時,擴大孔道SBA-15為18小時,小板狀SBA-15為30小時。
    由於SBA-15本身的酸性性質易使乙醇脫水產生乙烯進而積碳使觸媒失活,吾人試著添加MgO、CaO等鹼性層來改善此問題。結果發現添加鹼性層之後確實能降低積碳量,但是由於MgO和Ni會因為強烈的相互作用,經燒後會使得Ni2+離子會深入到MgO結構中,因此MgO的添加並不利於提升觸媒之穩定度;而CaO就無此問題,以NiCu55/LS(擴大孔徑SBA-15)為例,添加CaO(20 wt%)後,乙醇轉化率100%開始下降時間點從18小時延長至32小時。


    In this study, a simple sol-gel method is employed for synthesizing Ni-Cu nanoparticles inside the confined space of SBA-15 support. The nanoparticles are small and uniform rather than that made by conventional method. In addition, the nanoparticles are well-dispersed along the channels without blockage. The unique properties can be maintained even higher nanoparticle loading. The average grain size of nanoparticles only increases slightly from ~ 3 nm (10 wt%) to 3.5 nm (20 wt%).
    The synthesized NiCu/SBA-15 catalysts show good performance for hydrogen production via the steam reforming of ethanol reaction (SRE). For 0.05 g of NiCu55/SBA-15 (Ni: 5 wt%, Cu: 5 wt%) with the feeding molar ratio of H2O/EtOH = 6 and WHSV = 1.66 h-1, the ethanol conversion reaches 100% at 600 oC. Meanwhile, H2 selectivity of 70.4 %, CO2 selectivity of 22.4 %, CO selectivity of 6.4%, CH4 selectivity of 0.8% are shown in the product steam, indicating the excellent hydrogen production performance.
    In order to discuss the effect of various pore structures to the catalyst stability during SRE reactions, SBA-15 of short channels (platelet-like SBA-15), and of large pore sizes are prepared for comparison. The results indicate the stability of the catalysts can be effectively improved with proper pore structure. In term of coking issue, SBA-15 of shorter channels and larger pore sizes can inhibit the pore blockages caused by coking formation, therefore the catalyst life is improved. Considering the degradation time of ethanol conversion efficiency, the traditional SBA-15 is 5 hrs, while obvious improvement is done for the large-pore-size SBA-15 (18 hrs) and the platelet-like SBA-15 (30 hrs).
    Considering the surface property effect of the support, the acidic SBA-15 support leads to dehydration of ethanol to water and ethane, and subsequently coking of the catalysts makes themselves inactive. To tackle this drawback, MgO and CaO alkali materials are added to modify the surface acidity. However, MgO shows strong interaction with Ni after calcination, where MgO trends to cover on the Ni surface and is not suitable for nickel-based catalyst system. In contrast, CaO exhibits positive effect to SRE. In case of NiCu55/LS (large pore size SBA-15), the stability is able to extend (around 14 hrs) after adding 20 wt% CaO to SBA-15.

    摘要 I Abstract II 目錄 III 圖索引 VI 表索引 X 第一章 緒論 1 1.1 前言 1 1.2 新生代能源—氫能 2 1.3 氫氣發展史與應用及獲得方式 5 1.4 乙醇蒸氣重組製氫 8 1.5 研究動機與目的 11 第二章 文獻回顧 13 2.1 乙醇蒸氣重組的反應機制 13 2.2 溶膠凝膠法(Sol-gel method) 17 2.3 SRE之觸媒 22 2.3.1 貴金屬(noble metal)觸媒 23 2.3.2 非貴金屬(non-noble metal)觸媒 24 2.3.3 修飾功能性觸媒(promoted catalysts) 25 2.4 氧化物擔體 30 2.4.1 一般氧化物擔體 30 2.4.2 多孔性分子篩擔體 33 2.4.3 中孔洞分子篩SBA-15 37 2.4.3.1 界面活性劑與微胞介紹 37 2.4.3.2 SBA-15合成機制 40 2.4.4 小板狀(platelet)型態SBA-15 42 2.4.5 鹼性SBA-15擔體 44 2.5 觸媒特性鑑定各儀器之原理 47 2.5.1 X光繞射(XRD)分析原理 47 2.5.2 小角度散射(SAXS)分析原理 50 2.5.3 氮氣等溫吸/脫附儀(N2, Adsorption/Desorption, BET)分析原理 53 2.5.3.1 氣體吸附理論 53 2.5.3.2 吸/脫附等溫曲線(adsorption/desorption isotherm) 57 2.5.3.3 BET(Brunauer-Emmett-Teller)比表面積之求法 59 2.5.3.4 孔洞大小分布圖(Pore size distribution) 60 2.5.4 掃描式電子顯微鏡(SEM)分析原理 61 2.5.5 穿透式電子顯微鏡(TEM)分析原理 61 2.5.6 程式升溫還原(TPR)分析原理 62 2.5.7 感應耦合電漿原子放射光譜儀(ICP-AES)分析原理 63 2.5.8 熱重分析儀(TGA)分析原理 63 第三章 實驗步驟及方法 65 3.1 實驗藥品、氣體及儀器設備 65 3.1.1 實驗藥品 65 3.1.2 實驗氣體 66 3.1.3 儀器設備 66 3.2 觸媒製備 67 3.2.1 SBA-15合成步驟 67 3.2.2 大孔徑(Large pore size)SBA-15擔體 68 3.2.3 小板(platelet)狀SBA-15擔體 70 3.2.4 大孔徑之小板狀SBA-15擔體 71 3.2.5 直接合成法製備MgO(x)/SBA-15擔體 73 3.2.6 溶膠凝膠法製備MgO(x)/SBA-15擔體 75 3.2.7 溶膠凝膠法製備NiCuxx/MgO/SBA-15觸媒 76 3.3 觸媒與擔體的特性鑑定 77 3.3.1 X光繞射分析(XRD)、小角繞射分析(SAXS) 77 3.3.2 氮氣等溫吸/脫附儀分析(N2,Adsorption/Desorption;BET) 79 3.3.3 掃描式電子顯微鏡分析(SEM) 79 3.3.4 穿透式電子顯微鏡分析(TEM) 79 3.3.5 程式升溫還原分析(TPR) 80 3.3.6 感應耦合電漿原子放射光譜儀分析(ICP-AES) 80 3.4 觸媒活性測試 81 3.4.1 反應裝置 81 3.4.2 乙醇蒸氣重組反應條件及步驟 83 3.4.3 乙醇轉化率及各產物選擇率計算 84 3.4.4 積碳量測實驗 85 第四章 實驗結果 86 4.1 MgO/SP,LSP系列觸媒鑑定 88 4.1.1 X-ray繞射分析(XRD) 88 4.1.2 小角度繞射分析(SAXS) 91 4.1.3 掃描示電子顯微鏡(SEM) 95 4.1.4 穿透式電子顯微鏡(TEM) 104 4.1.5 氮氣等溫吸/脫附儀(N2,Adsorption/Desorption;BET) 110 4.2 NiCu/SP系列觸媒鑑定與活性分析 116 4.2.1 X-ray與小角度繞射分析(XRD & SAXS) 116 4.2.2 掃描示電子顯微鏡(SEM) 117 4.2.3 穿透式顯微鏡電子顯微鏡(TEM) 119 4.2.4 氮氣等溫吸/脫附儀(N2,Adsorption/Desorption;BET) 121 4.2.5 程式升溫還原(TPR) 123 4.2.6 NiCu/SP系列觸媒反應活性 124 4.3 NuCu55與NuCu55M(20)/S,LS,SP,LSP系列觸媒鑑定與活性分析 132 4.3.1 X-ray與小角度繞射分析(XRD & SAXS) 132 4.3.2 程式升溫還原(TPR) 134 4.3.3 NuCu55與NuCu55M(20)/S,LS,SP,LSP系列觸媒反應活性 136 4.4 觸媒之穩定度及積碳實驗 137 4.4.1 NuCu55/S,LS,SP,LSP系列觸媒 137 4.4.2 NuCu55M(20)/S,LS,SP,LSP系列觸媒及NuCu55C(20)/LS 140 4.5 觸媒經再活化後之活性測試 143 第五章 綜合討論 146 5.1 比較直接合成法與溶膠凝膠法製備MgO/SP, LSP系列觸媒擔體 146 5.2 NiCu/SP系列觸媒進行乙醇蒸氣重組反應 147 5.2.1 NiCu55/SP觸媒之乙醇蒸氣重組反應途徑和溫度變化之關係 149 5.3 殘存在擔體上之ZrO2對穩定度的影響 150 5.4 MgO的修飾對於觸媒穩定度之影響 154 5.5 積碳速率比較 157 第六章 結論 161 Reference 163

    [1] M. Specht, F. Staiss, A. Bandi et al., “Comparison of the renewable transportation fuels, liquid hydrogen and methanol, with gasoline--Energetic and economic aspects,” International Journal of Hydrogen Energy, vol. 23, no. 5, pp. 387-396, 1998.
    [2] 黃鎮江, “綠色能源,” pp. 6-19, 2008.
    [3] 台北市燃料電池基金會, [ Cited: http://www.tfci.org.tw/Fc/fc1-2.asp ]
    [4] 生質能知識館-再生能源網, [ Cited: http://www.re.org.tw/Re2/knowledge.aspx?CategoryID=6 ].
    [5] A. N. Fatsikostas, D. I. Kondarides, and X. E. Verykios, “Production of hydrogen for fuel cells by reformation of biomass-derived ethanol,” Catalysis Today, vol. 75, no. 1-4, pp. 145-155, 2002.
    [6] P. D. Vaidya, and A. E. Rodrigues, “Insight into steam reforming of ethanol to produce hydrogen for fuel cells,” Chemical Engineering Journal, vol. 117, no. 1, pp. 39-49, 2006.
    [7] S. Cavallaro, “Ethanol Steam Reforming on Rh/Al2O3 Catalysts,” Energy and Fuels, vol. 14, no. 6, pp. 1195-1199, 2000.
    [8] A. Haryanto, Fernando, S., Murali, N., Adhikari, S., “Current status of hydrogen production techniques by steam reforming of ethanol: A review ” Energy and Fuels, vol. 19, no. 5, pp. 2098-2106, 2005.
    [9] J. Llorca, N. Homs, J. Sales et al., “Effect of sodium addition on the performance of Co-ZnO-based catalysts for hydrogen production from bioethanol,” Journal of Catalysis, vol. 222, no. 2, pp. 470-480, 2004.
    [10] G. A. Deluga, J. R. Salge, L. D. Schmidt et al., “Renewable Hydrogen from Ethanol by Autothermal Reforming,” Science, vol. 303, no. 5660, pp. 993-997, February 13, 2004, 2004.
    [11] A. N. Fatsikostas, and X. E. Verykios, “Reaction network of steam reforming of ethanol over Ni-based catalysts,” Journal of Catalysis, vol. 225, no. 2, pp. 439-452, 2004.
    [12] F. Frusteri, S. Freni, V. Chiodo et al., “Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell,” Applied Catalysis A: General, vol. 270, no. 1-2, pp. 1-7, 2004.
    [13] J. Llorca, Ramrez de la Piscina, P., Sales, J., Homs, N., “Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts,” Chemical Communications no. 7, pp. 641-642, 2001.
    [14] M. A. Goula, S. K. Kontou, and P. E. Tsiakaras, “Hydrogen production by ethanol steam reforming over a commercial Pd/[gamma]-Al2O3 catalyst,” Applied Catalysis B: Environmental, vol. 49, no. 2, pp. 135-144, 2004.
    [15] A. S. Therdthianwong, T.; Therdthianwong, S.,, “Hydrogen Production by Catalytic Ethanol Steam Reforming,” ScienceAsia, vol. 27, pp. 193-198, 2001.
    [16] A. N. Fatsikostas, Kondarides, D.I., Verykios, X.E., “Steam reforming of biomass-derived ethanol for the production of hydrogen for fuel cell applications,” Chemical Communications no. 9, pp. 851-852, 2001.
    [17] P. Y. Sheng, and H. Idriss, “Ethanol reactions over Au--Rh/CeO[sub 2] catalysts. Total decomposition and H[sub 2] formation,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 22, no. 4, pp. 1652-1658, 2004.
    [18] S. Zhao, T. Luo, and R. J. Gorte, “Deactivation of the water-gas-shift activity of Pd/ceria by Mo,” Journal of Catalysis, vol. 221, no. 2, pp. 413-420, 2004.
    [19] F. Mariño, M. Boveri, G. Baronetti et al., “Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper-nickel catalysts,” International Journal of Hydrogen Energy, vol. 29, no. 1, pp. 67-71, 2004.
    [20] M. Dmk, M. Tth, J. Rask et al., “Adsorption and reactions of ethanol and ethanol-water mixture on alumina-supported Pt catalysts,” Applied Catalysis B: Environmental, vol. 69, no. 3-4, pp. 262-272, 2007.
    [21] Brinker, “Sol-Gel Science The Physics and Chemistry of Sol-Gel Preocessing,” Academic Press Inc, 1990.
    [22] L. L. Hench, and J. K. West, “The sol-gel process,” Chemical Reviews, vol. 90, no. 1, pp. 33-72, 1990.
    [23] A. L. Hector, “Materials synthesis using oxide free sol-gel systems,” Chemical Society Reviews, vol. 36, no. 11, pp. 1745-1753, 2007.
    [24] M. Kakihana, “Invited review “sol-gel” preparation of high temperature superconducting oxides,” Journal of Sol-Gel Science and Technology, vol. 6, no. 1, pp. 7-55, 1996.
    [25] Pechini, “Methed of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Mrthus Using the Same to Form a Capacitor,” U.S. Pat., vol. 3, no. 330, pp. 697, 1967.
    [26] D. K. Liguras, D. I. Kondarides, and X. E. Verykios, “Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts,” Applied Catalysis B: Environmental, vol. 43, no. 4, pp. 345-354, 2003.
    [27] C. Rioche, S. Kulkarni, F. C. Meunier et al., “Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts,” Applied Catalysis B: Environmental, vol. 61, no. 1-2, pp. 130-139, 2005.
    [28] A. Erdohelyi, Rask, J., Kecsks, T., Tth, M., Dmk, M., Ban, K., “Hydrogen formation in ethanol reforming on supported noble metal catalysts,” Catalysis Today, vol. 116, no. 3, pp. 367-376, 2006.
    [29] A. Basagiannis, P. Panagiotopoulou, and X. Verykios, “Low Temperature Steam Reforming of Ethanol Over Supported Noble Metal Catalysts,” Topics in Catalysis, vol. 51, no. 1, pp. 2-12, 2008.
    [30] J. Sun, X. Qiu, F. Wu et al., “Hydrogen from steam reforming of ethanol in low and middle temperature range for fuel cell application,” International Journal of Hydrogen Energy, vol. 29, no. 10, pp. 1075-1081, 2004.
    [31] Y. Yang, J. Ma, and F. Wu, “Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst,” International Journal of Hydrogen Energy, vol. 31, no. 7, pp. 877-882, 2006.
    [32] M. N. Barroso, M. F. Gomez, L. A. Arrúa et al., “Hydrogen production by ethanol reforming over NiZnAl catalysts,” Applied Catalysis A: General, vol. 304, pp. 116-123, 2006.
    [33] S. Cavallaro, N. Mondello, and S. Freni, “Hydrogen produced from ethanol for internal reforming molten carbonate fuel cell,” Journal of Power Sources, vol. 102, no. 1-2, pp. 198-204, 2001.
    [34] J. Llorca, N. Homs, J. Sales et al., “Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming,” Journal of Catalysis, vol. 209, no. 2, pp. 306-317, 2002.
    [35] M. S. Batista, R. K. S. Santos, E. M. Assaf et al., “High efficiency steam reforming of ethanol by cobalt-based catalysts,” Journal of Power Sources, vol. 134, no. 1, pp. 27-32, 2004.
    [36] H. Song, L. Zhang, R. B. Watson et al., “Investigation of bio-ethanol steam reforming over cobalt-based catalysts,” Catalysis Today, vol. 129, no. 3-4, pp. 346-354, 2007.
    [37] L. P. R. Profeti, E. A. Ticianelli, and E. M. Assaf, “Ethanol steam reforming for production of hydrogen on magnesium aluminate-supported cobalt catalysts promoted by noble metals,” Applied Catalysis A: General, vol. 360, no. 1, pp. 17-25, 2009.
    [38] L. P. R. Profeti, E. A. Ticianelli, and E. M. Assaf, “Production of hydrogen via steam reforming of biofuels on Ni/CeO2-Al2O3 catalysts promoted by noble metals,” International Journal of Hydrogen Energy, vol. 34, no. 12, pp. 5049-5060, 2009.
    [39] F. Arena, F. Frusteri, and A. Parmaliana, “Alkali promotion of Ni/MgO catalysts,” Applied Catalysis A: General, vol. 187, no. 1, pp. 127-140, 1999.
    [40] S. Velu, K. Suzuki, M. Vijayaraj et al., “In situ XPS investigations of Cu1-xNixZnAl-mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol,” Applied Catalysis B: Environmental, vol. 55, no. 4, pp. 287-299, 2005.
    [41] V. Fierro, O. Akdim, H. Provendier et al., “Ethanol oxidative steam reforming over Ni-based catalysts,” Journal of Power Sources, vol. 145, no. 2, pp. 659-666, 2005.
    [42] F. Auprêtre, C. Descorme, and D. Duprez, “Bio-ethanol catalytic steam reforming over supported metal catalysts,” Catalysis Communications, vol. 3, no. 6, pp. 263-267, 2002.
    [43] F. Frusteri, S. Freni, L. Spadaro et al., “H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts,” Catalysis Communications, vol. 5, no. 10, pp. 611-615, 2004.
    [44] C. Diagne, H. Idriss, K. Pearson et al., “Efficient hydrogen production by ethanol reforming over Rh catalysts. Effect of addition of Zr on CeO2 for the oxidation of CO to CO2,” Comptes Rendus Chimie, vol. 7, no. 6-7, pp. 617-622, 2004.
    [45] J. Sun, X.-P. Qiu, F. Wu et al., “H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application,” International Journal of Hydrogen Energy, vol. 30, no. 4, pp. 437-445, 2005.
    [46] J. Comas, F. Marino, M. Laborde et al., “Bio-ethanol steam reforming on Ni/Al2O3 catalyst,” Chemical Engineering Journal, vol. 98, no. 1-2, pp. 61-68, 2004.
    [47] A. J. Akande, R. O. Idem, and A. K. Dalai, “Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production,” Applied Catalysis A: General, vol. 287, no. 2, pp. 159-175, 2005.
    [48] J. Llorca, P. R. de la Piscina, J.-A. Dalmon et al., “CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts: Effect of the metallic precursor,” Applied Catalysis B: Environmental, vol. 43, no. 4, pp. 355-369, 2003.
    [49] F. Haga, T. Nakajima, H. Miya et al., “Catalytic properties of supported cobalt catalysts for steam reforming of ethanol,” Catalysis Letters, vol. 48, no. 3, pp. 223-227, 1997.
    [50] T. Umegaki, K. Kuratani, Y. Yamada et al., “Hydrogen production via steam reforming of ethyl alcohol over nano-structured indium oxide catalysts,” Journal of Power Sources, vol. 179, no. 2, pp. 566-570, 2008.
    [51] E. Seker, “The catalytic reforming of bio-ethanol over SiO2 supported ZnO catalysts: The role of ZnO loading and the steam reforming of acetaldehyde,” International Journal of Hydrogen Energy, vol. 33, no. 8, pp. 2044-2052, 2008.
    [52] A. Gil, A. D燰z, L. M. Gand燰 et al., “Influence of the preparation method and the nature of the support on the stability of nickel catalysts,” Applied Catalysis A: General, vol. 109, no. 2, pp. 167-179, 1994.
    [53] J. L. Carter, J. A. Cusumano, and J. H. Sinfelt, “Catalysis over Supported Metals. V. The Effect of Crystallite Size on the Catalytic Activity of Nickel,” The Journal of Physical Chemistry, vol. 70, no. 7, pp. 2257-2263, 1966.
    [54] H. G. Karge, E. M. F. H. van Bekkum, and J. C. Jansen, "Chapter 14 Coke Formation on Zeolites," Studies in Surface Science and Catalysis, pp. 531-570: Elsevier, 1991.
    [55] J. S. Beck, J. C. Vartuli, W. J. Roth et al., “A new family of mesoporous molecular sieves prepared with liquid crystal templates,” Journal of the American Chemical Society, vol. 114, no. 27, pp. 10834-10843, 1992.
    [56] C. T. Kresge, M. E. Leonowicz, W. J. Roth et al., “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature, vol. 359, no. 6397, pp. 710-712, 1992.
    [57] D. Zhao, Q. Huo, J. Feng et al., “Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures,” Journal of the American Chemical Society, vol. 120, no. 24, pp. 6024-6036, 1998.
    [58] S. Inagaki, Fukushima, Y., Kuroda, K., “Synthesis of highly ordered mesoporous materials from a layered polysilicate,” Journal of the Chemical Society, Chemical Communications, no. 8, pp. 680-682, 1993.
    [59] R. Ryoo, J. M. Kim, C. H. Ko et al., “Disordered Molecular Sieve with Branched Mesoporous Channel Network,” The Journal of Physical Chemistry, vol. 100, no. 45, pp. 17718-17721, 1996.
    [60] S. A. Bagshaw, E. Prouzet, and T. J. Pinnavaia, “Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants,” Science, vol. 269, no. 5228, pp. 1242-1244, 1995.
    [61] P. T. Tanev, and T. J. Pinnavaia, “A Neutral Templating Route to Mesoporous Molecular Sieves,” Science, vol. 267, no. 5199, pp. 865-867, 1995.
    [62] J. N. Israelachvili, Marcelja, S., Horn, R.G., “Physical principles of membrane organization,” Quarterly Reviews of Biophysics vol. 13, no. 2, pp. 121-200, 1980.
    [63] D. J. Mitchell, Ninham, B.W., “Micelles, vesicles and microemulsions,” Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, vol. 77, no. 4, pp. 601-629, 1981.
    [64] Q. Huo, D. I. Margolese, and G. D. Stucky, “Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials,” Chemistry of Materials, vol. 8, no. 5, pp. 1147-1160, 1996.
    [65] C. Tanford, “Macromolecules,” Protein Science, vol. 3, no. 5, pp. 857-861, 1994.
    [66] J. E. Evans, Springer, K.W., Zhang, J.Z., “Femtosecond studies of interparticle electron transfer in a coupled CdS-TiO2 colloidal system,” The Journal of Chemical Physics, vol. 101, no. 7, pp. 6222-6225, 1994.
    [67] D. Zhao, J. Feng, Q. Huo et al., “Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores,” Science, vol. 279, no. 5350, pp. 548-552, 1998.
    [68] C.-M. Yang, B. Zibrowius, W. Schmidt et al., “Consecutive Generation of Mesopores and Micropores in SBA-15,” Chemistry of Materials, vol. 15, no. 20, pp. 3739-3741, 2003.
    [69] A. Sayari, B.-H. Han, and Y. Yang, “Simple Synthesis Route to Monodispersed SBA-15 Silica Rods,” Journal of the American Chemical Society, vol. 126, no. 44, pp. 14348-14349, 2004.
    [70] P. Linton, and V. Alfredsson, “Growth and Morphology of Mesoporous SBA-15 Particles,” Chemistry of Materials, vol. 20, no. 9, pp. 2878-2880, 2008.
    [71] M. Kruk, and L. Cao, “Pore Size Tailoring in Large-Pore SBA-15 Silica Synthesized in the Presence of Hexane,” Langmuir, vol. 23, no. 13, pp. 7247-7254, 2007.
    [72] Y.-Y. Fahn, A.-C. Su, and P. Shen, “Towerlike SBA-15: Base and (10)-Specific Coalescence of a Silicate-Encased Hexagonal Mesophase Tailored by Nonionic Triblock Copolymers,” Langmuir, vol. 21, no. 1, pp. 431-436, 2004.
    [73] Q. Lu, F. Gao, S. Komarneni et al., “Ordered SBA-15 Nanorod Arrays Inside a Porous Alumina Membrane,” Journal of the American Chemical Society, vol. 126, no. 28, pp. 8650-8651, 2004.
    [74] K. Kosuge, T. Sato, N. Kikukawa et al., “Morphological Control of Rod- and Fiberlike SBA-15 Type Mesoporous Silica Using Water-Soluble Sodium Silicate,” Chemistry of Materials, vol. 16, no. 5, pp. 899-905, 2004.
    [75] S.-Y. Chen, C.-Y. Tang, W.-T. Chuang et al., “A Facile Route to Synthesizing Functionalized Mesoporous SBA-15 Materials with Platelet Morphology and Short Mesochannels,” Chemistry of Materials, vol. 20, no. 12, pp. 3906-3916, 2008.
    [76] T. Wagner, T. Waitz, J. Roggenbuck et al., “Ordered mesoporous ZnO for gas sensing,” Thin Solid Films, vol. 515, no. 23, pp. 8360-8363, 2007.
    [77] J. J. Dittmer, E. A. Marseglia, and R. H. Friend, “Electron Trapping in Dye/Polymer Blend Photovoltaic Cells,” Advanced Materials, vol. 12, no. 17, pp. 1270-1274, 2000.
    [78] K. Petritsch, J. J. Dittmer, E. A. Marseglia et al., “Dye-based donor/acceptor solar cells,” Solar Energy Materials and Solar Cells, vol. 61, no. 1, pp. 63-72, 2000.
    [79] L. Sicot, C. Fiorini, A. Lorin et al., “Improvement of the photovoltaic properties of polythiophene-based cells,” Solar Energy Materials and Solar Cells, vol. 63, no. 1, pp. 49-60, 2000.
    [80] S. A. Jenekhe, Yi, S., “Efficient photovoltaic cells from semiconducting polymer heterojunctions,” Applied Physics Letters, vol. 77, no. 17, pp. 2635-2637, 2000.
    [81] Z. Y. Wu, Q. Jiang, Y. M. Wang et al., “Generating Superbasic Sites on Mesoporous Silica SBA-15,” Chemistry of Materials, vol. 18, no. 19, pp. 4600-4608, 2006.
    [82] L. B. Sun, J. H. Kou, Y. Chun et al., “New Attempt at Directly Generating Superbasicity on Mesoporous Silica SBA-15,” Inorganic Chemistry, vol. 47, no. 10, pp. 4199-4208, 2008.
    [83] B. Chu, and B. S. Hsiao, “Small-Angle X-ray Scattering of Polymers,” Chemical Reviews, vol. 101, no. 6, pp. 1727-1762, 2001.
    [84] 鄭有舜, 物理雙月刊, vol. 26, pp. 416, 2004.
    [85] Y. L. Wei, Y. M. Wang, J. H. Zhu et al., “In-Situ Coating of SBA-15 with MgO: Direct Synthesis of Mesoporous Solid Bases from Strong Acidic Systems,” Advanced Materials, vol. 15, no. 22, pp. 1943-1945, 2003.
    [86] A. J. Vizca' o, A. Carrero, and J.A. Calles, “Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts. International Journal of Hydrogen Energy,” International Journal of Hydrogen Energy, vol. 32, no. 10-11, pp. 1450-1461, 2006.
    [87] A. Carrero, J. A. Calles, and A. J. Vizca璯o, “Hydrogen production by ethanol steam reforming over Cu-Ni/SBA-15 supported catalysts prepared by direct synthesis and impregnation,” Applied Catalysis A: General, vol. 327, no. 1, pp. 82-94, 2007.
    [88] Y. Wan, and Zhao, “On the Controllable Soft-Templating Approach to Mesoporous Silicates,” Chemical Reviews, vol. 107, no. 7, pp. 2821-2860, 2007.
    [89] B. A. Raich, and H. C. Foley, “Ethanol Dehydrogenation with a Palladium Membrane Reactor: An Alternative to Wacker Chemistry,” Industrial & Engineering Chemistry Research, vol. 37, no. 10, pp. 3888-3895, 1998.
    [90] Y.-J. Tu, and Y.-W. Chen, “Effects of Alkaline-Earth Oxide Additives on Silica-Supported Copper Catalysts in Ethanol Dehydrogenation,” Industrial & Engineering Chemistry Research, vol. 37, no. 7, pp. 2618-2622, 1998.
    [91] S. M. de Lima, A. M. Silva, I. O. da Cruz et al., “H2 production through steam reforming of ethanol over Pt/ZrO2, Pt/CeO2 and Pt/CeZrO2 catalysts,” Catalysis Today, vol. 138, no. 3-4, pp. 162-168, 2008.
    [92] F. Li, J.-G. Wang, Y.-P. Liu et al., “Crossed-discs of mesoporous silica SBA-15 and their carbon replicas,” Journal of Materials Science, vol. 44, no. 24, pp. 6505-6511, 2009.

    QR CODE