簡易檢索 / 詳目顯示

研究生: 李宥增
Yu-Tseng Li
論文名稱: 模擬退火法應用在離軸非球面光柵元件之成形誤差分析研究
Research on Form Error of Off-Axial Aspherical Reflective Grating Element by Simulated Annealing Method
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 李世榮
Shah-Rong Lee
楊棧雲
CHAN-YUN YANG
陳盈同
Ying-Tung Chen
莊程媐
Cheng-Hsi Chuang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 176
中文關鍵詞: 射出成形模擬退火法基因演算法離軸非球面光柵元件成形視窗
外文關鍵詞: Injection Molding (IM), Simulated Annealing (SA), Genetic Algorithm (GA), Off-axial Aspherical (OAA), Grating Element, Molding Window
相關次數: 點閱:263下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 射出成形技術製造微米尺度光學元件較為困難,因需要同時控制多個製程參數使產品於誤差範圍內。本研究將模擬退火法(Simulated Annealing, SA)與基因演算法(Genetic Algorithm, GA)應用於離軸非球面反射式光柵光學元件 (Off-Axial Aspherical Reflective Grating Optical Element, OAA-RGOE)製成,使巨觀尺度下非球面之殘餘誤差(Residual error, Rt)降低及微觀尺度下微結構之成形複製率(Groove Filling Ratio, GFR)提高。另外,利用模流分析結合材料特性預估不同材料的射出成型視窗。延續先前研究之成果,將射出成形中的七個參數,針對成形誤差與微結構複製率擬合回歸方程式,並使用模擬退火法與基因演算法找出最佳射出成形參數。再利用模流分析結合LCP-LCR270N的材料性質預估成形視窗並驗證。經實際射出成形視窗後得知,預估與實際射出的成形視窗其可成形OAA-RGOE的範圍皆相同。由演算法的結果實際射出得知,最佳之Rt值可降至13.19 μm及GFR為81.1 %,光學性質半高寬為9.8 nm,雜散光為6.53 %。且在與先前研究相同的光學性質下,利用模擬退火法可以得到較好的成形誤差。未來研究可增加數據的數量或加入更多的製程變數於回歸方程式中,提升找到更好的射出參數的可能性。本研究之OAA-RGOE可應用於微型光譜儀。


    Injection molding technology is difficult to produce micron-scale optical components, because it is necessary to control multiple process parameters at the same time to keep the product within the error range. This study aims to improve the residual error (Rt) of the aspheric surface at the macro scale and the Groove Filling Ratio (GFR) of the microstructure at the micro scale of Off-Axial Aspherical Reflective Grating Optical Element (OAA-RGOE) by using Simulated Annealing (SA) and Genetic Algorithm (GA). In addition, uses mold flow analysis combined with material properties to predict the injection molding window of different materials. This thesis continues the previous research. This research fits the regression functions for the Rt and GFR by using seven sets of injection molding parameters, and use SA and GA to find the best injection parameters, which have the lowest Rt and the highest GFR. Moreover, using mold flow analysis software, and combined the material properties of LCP-LCR270N to estimate the molding window and verified by molding window experiment. After molding window experiment, it is known that the range of OAA-RGOE that can be formed is the same form the estimated and actual molding window. According to the experiments results from SA and GA, the best Rt value can be reduced to 13.19 μm and GFR is 81.1 %. The optical property Full Width at Half Maximum (FWHM) is 9.8 nm and the Stray Light Ratio (SLR) is 6.53 %. In addition, under the same optical properties as the previous research, SA can have better forming errors. In future work can increase the amount of data or add more variables to the regression function to improve the possibility of finding better injection molding parameters. The OAA-RGOE in this study can be inserted into a miniature spectrometer.

    摘要 I ABSTRACT II 致謝 III 目錄 VI 圖目錄 XII 表目錄 XVIII 第一章 導論 1 1.1 研究背景 1 1.2 研究目的 3 1.3 研究方法 4 1.4 論文架構 5 第二章 文獻回顧 7 2.1 射出壓縮成形相關文獻 7 2.2 溫度對射出成形影響相關文獻 18 2.3 微奈米尺度結構射出成形相關文獻 26 2.4 人工智慧相關文獻 32 2.5 相關專利文獻回顧 37 2.6 歷屆光柵研究成果 38 2.7 文獻回顧總結 39 第三章 最佳化原理介紹與驗證 41 3.1 射出成形參數之挑選 41 3.2 模擬退火法 43 3.2.1 模擬退火法之理論 43 3.2.2 模擬退火法之演算流程 43 3.2.3 模擬退火法之參數選用 45 3.2.4 模擬退火法驗證 47 3.3 基因演算法 48 3.3.1 基因演算法之理論 48 3.3.2 基因演算法之演算流程 48 3.3.3 基因演算法之參數選用 50 3.3.4 基因演算法驗證 53 第四章 模流分析與模具結構 54 4.1 模流分析 54 4.1.1 射出成形參數模擬 56 4.1.2 體積充填率與鎖模力 57 4.2 反射式光學元件模具與模仁設計 59 第五章 實驗設備與規劃 63 5.1 實驗設備 63 5.1.1. 射出成形製程設備 63 5.1.2. 變模溫製程模組 65 5.1.3. MV-IEM控制系統 67 5.1.4. 微振動式製程模組 69 5.2 量測設備 72 5.3 實驗規劃 74 5.3.1 實驗流程 74 5.3.2 實驗參數設定與取樣方法 75 第六章 實驗結果與討論 77 6.1 成形視窗預估與驗證 77 6.1.1 LCP-LCR270N成形視窗預估 78 6.1.2 LCP-LCR270N成形視窗驗證 79 6.2 人工智慧於最佳化之應用 80 6.2.1 模擬退火法於最佳化之應用 81 6.2.2 基因演算法於最佳化之應用 82 6.3 離軸非球面檢測結果 83 6.3.1 模擬退火法(SA)之殘餘誤差結果 84 6.3.2 基因演算法(GA)之殘餘誤差結果 85 6.4 微結構複製率檢測結果 86 6.4.1 模擬退火法(SA)之微結構複製率結果 87 6.4.2 基因演算法(GA)之微結構複製率結果 88 6.5 光學檢測結果 89 6.5.1 模擬退火法(SA)之光學檢測結果 90 6.5.2 基因演算法(GA)之光學檢測結果 93 6.6 綜合結果與討論 96 第七章 結論與建議 102 7.1 結論 102 7.2 建議 104 參考文獻 106 附錄A 離軸非球面反射式光學元件介紹 112 A1 離軸非球面 112 A2 光柵光學元件 113 附錄B 射出成形製程介紹 114 B1 射出成形基本模式 114 B2 變模溫射出成形製程 115 B3 射出壓縮成形 116 B4 壓電制動器介紹 117 B5 微振動式射出壓印成形 118 附錄C 製程整合 119 附錄D 液晶聚合物介紹 120 D1 液晶聚合物-熱性質檢測介紹 121 D2 液晶聚合物-熱性質檢測結果 122 附錄E 成形誤差介紹 124 附錄F 微結構複製率介紹 126 附錄G 離軸非球面與微結構量測 127 附錄H 鍍反射模 129 附錄I 光譜檢測 130 附錄J 塑膠材料特性表 131 附錄K 塑膠材料LCP特性表-MOLDEX3D 132 附錄L 模具設計圖 134 I1 模具設計圖-母模側 134 I2 模具設計圖-公模側 135 I3 模具組立圖 136 附錄M 模仁設計圖 137 附錄N 射出成形機 FANUC ROBOSHOT Α-15IA 138 附錄O 冰水模溫機(科基 KC-0502W) 139 附錄P LABVIEW圖控程式 140 附錄Q 石英壓力感測器(KISTLER 6157B) 141 附錄R 電荷放大器(KISTLER 5039A) 142 附錄S 壓電致動器PIEZOMECHANIK PST150/20/40 143 附錄T GA & SA殘餘誤差量測資料 144 附錄U GA & SA微結構高度量測資料 145 附錄V 模仁之微結構高度量測資料 149 附錄W GA & SA光學性質量測資料 150 附錄X SA之程式碼 151 附錄Y GA之程式碼 153 附錄Z SA、GA與OPTIMTOOL之比較 155

    侯建宇,"閉迴路微壓電致動系統之射出壓印製程應用於結構光學元件成形研究",碩士論文,機械工程系,國立臺灣科技大學,台北市,2017。
    [2] 王立紘,'微振動式射出壓印成形於離軸非球面光柵元件之成形誤差分析研究',碩士論文,機械工程系,國立臺灣科技大學,台北市,2019。
    [3] 賴昶順,"含微結構之非軸對稱非球面反射式光學元件射出成形分析研究",碩士論文,機械工程系,國立臺灣科技大學,台北市,2016。
    [4] Michaeli, W., Hebner, S., Klaiber, F., Forster, J., and Eversheim, W., "Geometrical accuracy and optical performance of injection moulded and injection-compression moulded plastic parts," Cirp Annals-Manufacturing Technology, Article vol. 56, pp. 545-548, 2007.
    [5] 李豐吉,"多尺度複合式光學元件射出成形研究",碩士論文,機械工程系,國立臺灣科技大學,台北市,2009。
    [6] 王志豪,"振動式射壓於複合式光學元件射出成形之研究",碩士論文,機械工程系,國立臺灣科技大學,台北市,2010。
    [7] 詹家銘,"多尺度非球面陣列透鏡之振動式射出壓縮成形研究",碩士論文,機械工程系,國立臺灣科技大學,台北市,2012。
    [8] Hassan, H., "An experimental work on the effect of injection molding parameters on the cavity pressure and product weight," International Journal of Advanced Manufacturing Technology, Article vol. 67, pp. 675-686, 2013.
    [9] Sortino, M., Totis, G., and Kuljanic, E., "Comparison of Injection Molding Technologies for the Production of Micro-optical Devices," Procedia Engineering, vol. 69, pp. 1296-1305, 2014.
    [10] 游承凡,"微型光柵光學元件製造之射出成形研究",碩士論文,機械工程系,國立臺灣科技大學,台北市,2015。
    [11] Lee, K. L., Yu, M. L., Shi, X., Li, Y. R., Ueno, K., Misawa, H., Wei, P. K., "Injection compression molding of transmission-type Fano resonance biochips for multiplex sensing applications", Applied Materials Today, vol. 16, pp. 72-82, 2019.
    [12] Hattori, S., Nagato, K., Hamaguchi, T., and Nakao, M., "Rapid injection molding of high-aspect-ratio nanostructures," Microelectronic Engineering, Article; Proceedings Paper vol. 87, pp. 1546-1549, 2010.
    [13] Xiao, C. L. and Huang, H. X., "Development of a rapid thermal cycling molding with electric heating and water impingement cooling for injection molding applications," Applied Thermal Engineering, Article vol. 73, pp. 712-722, 2014.
    [14] Lucchetta, G., Sorgato, M., Carmignato, S., and Savio, E., "Investigating the technological limits of micro-injection molding in replicating high aspect ratio micro-structured surfaces," Cirp Annals-Manufacturing Technology, Article vol. 63, pp. 521-524, 2014.
    [15] Nugay, I. I. and Cakmak, M., "Instrumented film-insert injection compression molding for lens encapsulation of liquid crystal displays," Displays, vol. 38, pp. 20-31, 2015.
    [16] La, M., Park, S. M., Kim, W., Lee, C., Kim, C., and Kim, D. S., "Injection Molded Plastic Lens for Relay Lens System and Optical Imaging Probe," International Journal of Precision Engineering and Manufacturing, vol. 16, pp. 1801-1808, 2015.
    [17] De Santis, F. and Pantani, R., "Development of a rapid surface temperature variation system and application to micro-injection molding," Journal of Materials Processing Technology, vol. 237, pp. 1-11, 2016.
    [18] Xiao, C. L., Huang, H. X., and Yang, X., "Development and application of rapid thermal cycling molding with electric heating for improving surface quality of microcellular injection molded parts," Applied Thermal Engineering, vol. 100, pp. 478-489, 2016.
    [19] Meister, S., Seefried, A., and Drummer, D., "Replication quality of micro structures in injection moulded thin wall parts using rapid tooling moulds," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 22, pp. 687-698, 2016.
    [20] Speranza, V., Liparoti, S., Calaon, M., Tosello, G., Pantani, R., and Titomanlio, G., "Replication of micro and nano-features on iPP by injection molding with fast cavity surface temperature evolution," Materials & Design, vol. 133, pp. 559-569, 2017.
    [21] Zhang, N., Zhang, H., Stallard, C., Fang, F., and Gilchrist, M. D., "Replication integrity of micro features using variotherm and vacuum assisted microinjection moulding," CIRP Journal of Manufacturing Science and Technology, vol. 23, pp. 20-38, 2018.
    [22] Wu, C. H. and Chen, W. S., "Injection molding and injection compression molding of three-beam grating of DVD pickup lens," Sensors and Actuators a-Physical, vol. 125, pp. 367-375, 2006.
    [23] Masato, D., Sorgato, M., and Lucchetta, G., "Analysis of the influence of part thickness on the replication of micro-structured surfaces by injection molding," Materials & Design, vol. 95, pp. 219-224, 2016.
    [24] Holthusen, A. K., Riemer, O., Schmutz, J., and Meier, A., "Mold machining and injection molding of diffractive microstructures," Journal of Manufacturing Processes, vol. 26, pp. 290-294, 2017.
    [25] Surace, R., Bellantone, V., Trotta, G., and Fassi, I., "Replicating capability investigation of micro features in injection moulding process," Journal of Manufacturing Processes, vol. 28, pp. 351-361, 2017.
    [26] Muntada-López, O., Pina-Estany, J., Colominas, C., Fraxedas, J., Pérez-Murano, F., and García-Granada, A., "Replication of nanoscale surface gratings via injection molding," Micro and Nano Engineering, vol. 3, pp. 37-43, 2019.
    [27] Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi, 'Optimization by Simulated Annealing', Science, 220: 671, 1983.
    [28] Kirkpatrick, S., 'Optimization by simulated annealing: Quantitative studies', Journal of Statistical Physics, 34: 975-86, 1984.
    [29] Szu, Harold, and Ralph Hartley, 'Fast simulated annealing', Physics Letters A, 122: 157-62, 1987.
    [30] Sarfraz, M., and M. Riyazuddin, "Curve Fitting with NURBS using Simulated Annealing." In Applied Soft Computing Technologies: The Challenge of Complexity, pp 99-112, 2006.
    [31] Mathivanan, D., and Parthasarathy, N. S., 'Sink-mark minimization in injection molding through response surface regression modeling and genetic algorithm', The International Journal of Advanced Manufacturing Technology, vol. 45, pp. 867, 2009.
    [32] Altan, M., 'Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods', Materials & Design, vol. 31, pp. 599-604, 2010.
    [33] 韓志翔,"光學薄件的成形方法",中華民國專利,公開號201107805A1,2011。
    [34] Chen, C. C., Lee, F. C., Wang, K. L., and Yeh, C. H., "In-mold vibratile injection compression molding method and molding apparatus thereof", U. S. Patent., 20150336316A1, 2015.
    [35] 陳炤彰,游承凡,賴昶順,侯建宇,"具有微結構之光學元件的製造方法",中華民國專利,公開號201825382A,2018。
    [36] 陳建人,"光學元件精密製造與檢測",國家實驗研究院儀器科技中心,新竹,2007。
    [37]【Day01】GA with you - What's GA? 什麼是基因演算法?, https://ithelp.ithome.com.tw/articles/10216099
    [38] 劉士榮,"高分子流變學",滄海書局,2005。
    [39] 王茂齡,張榮語,許嘉翔,"模流分析理論與實務",科盛科技股份有限公司,新竹, 2018。
    [40] 張子成,邢繼綱,"塑膠產品設計",全華圖書,2008。
    [41] 張維根,"模擬退火法應用在軸對稱非球面鏡片模仁參數分析研究",碩士論文,機械工程系,國立臺灣科技大學,台北市,2002。
    [42] Kelleher, A., Kelleher, A., 楊尊一, "機器學習實務-資料科學工作流程與應用程式開發及最佳化", 基峰資訊股份有限公司, 2019。

    QR CODE