簡易檢索 / 詳目顯示

研究生: 陳韋誠
Wei-cheng Chen
論文名稱: 乳酸生產程序最適化分析
Optimum Analysis for the Lactic acid production
指導教授: 周宜雄
Yi-shyong Chou
口試委員: 錢義隆
I-lung Chien
王逢盛
Feng-sheng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 58
中文關鍵詞: 基因演算法最適化批式反應器饋料批式反應器乳酸
外文關鍵詞: genetic algorithm, optimization, batch reactor, fed-batch reactor, lactic acid
相關次數: 點閱:219下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先以數學模式描述Enterococcus faecalis RKY1及乳酸在批式反應器及饋料批式反應器的生長情形。接著利用基因演算法尋找批式製程最適化的操作條件(pH、初始細菌濃度、初始基質濃度及發酵時間),以獲得最高的乳酸生產速率,經由最適化後得到的乳酸生產速率為5.1023(g/l*h)。最後以三個目標函數分別在不同的糖蜜進料段數下,利用基因演算法尋找饋料批式製程最佳的進料策略及操作條件,以獲得最高的乳酸產量,經由最適化後得到最高乳酸產量為113.23(g/l)。


    In the first part of this research, we describe Enterococcus faecalis RKY1 growth and lactic acid production in a batch reactor and a fed-batch reactor by mathematical model. Then we search the optimal operational conditions by Genetic Algorithm to get the highest lactic productivity. The productivity is 5.1023(g/l*h).
    For getting the largest lactic acid amount, we choose three objective functions to find the optimal operational conditions in different fragments by Genetic Algorithm in the finial part of this research. The largest lactic acid amount we get is 113.23(g/l).

    中文摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VI 第一章 前言 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目的 3 1.4 文獻回顧 4 1.5 研究貢獻 7 1.6 組織章節 7 第二章 乳酸生產程序 2.1 前言 8 2.2 乳酸的生產程序 8 2.3 批式製程 10 2.3.1 批式製程數學模式 11 2.3.2 四種不同基質濃度於pH=7批式製程 13 2.3.3 五個不同pH值於基質濃度102(g/l)批式製程 14 2.3.4 模擬結果與討論 15 2.4 饋料批式製程 18 第三章 最適化方法 3.1 前言 22 3.2 傳統演算法 23 3.3 簡述基因演算法 25 第四章 乳酸生產製程最適化 4.1 批式製程最適化 30 4.2 饋料批式製程最適化 36 4.2.1 前言 36 4.2.2 饋料批式最適化 38 第五章 結論與未來展望 5.1 結論 52 5.2 未來展望 53 符號說明 54 參考文獻 56

    [中文]
    [1] 陳俊中,陳志義(2007).生物化學工程:發酵與分離純化
    [2] 陳洪章 ,陳淑德(2007).生物程序工程與設備
    [英文]
    [1] Altiok, D.; Tokatli, F.; Harsa, S. Kinetic modelling of lactic acid production from whey by Lactobacillus casei (NRRL B-441).Journal of Chemical Technology and Biotechnology. 2006, 81, 1190.

    [2] Bailey, J. E.; Ollis, D. F. Biochemical Engineering Fundamentals 2nd Edn.McGRaw-Hill, Singapore. 1986.

    [3] Banga, J.R.; Balsa-Canto, E.; Moles, C. G.; Alonso, A. A. Dynamic optimization of bioprocesses: Efficient and robust numerical strategies. Jornal of Biotechnology. 2005, 117, 407.

    [4] Berry, A. R.; Franco, C. M. M.; Zhang, W.; Middelberg, A. P. J. Growth and lactic acid production in batch culture of Lactobacillus rhamnosus in a defined medium. Biotechnology Letters. 1999, 21, 163.

    [5] Boonmee, M.; Leksawasdi, N.; Bridge. W.; Rogers,P.L. Batch and continuous culture of Lactococcus lactis NZ133: experimental data and model development. Biochemical Engineering Journal. 2003, 14, 127.

    [6] Chiou, J. P.; Wang, F. S. Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process. Compters and Chemical Engineering. 1999, 23, 1277.

    [7] Haupt, R. L.; Haupt, S. E. Practical Genetic Slgorithms 2nd. Wiley interscience. 2004.

    [8] Lee, J. H.; Hong, J.; Lim, H. C. Experimental optimization of fed-batch culture for poly-β-hydroxybutyric acid production. Biotechnology and Bioengineering. 1997, 56, 697.

    [9] Luedeking, R.; Piret, E. L. A kinetic study of the lactic acid fermentation. Journal of Biochemical and Microbiological Technology and Engineering. 1959, 4, 393.

    [10] Mahadevan, R.; Doyle III, F. J. On-Line optimization of recombinant product in a fed-batch bioreactor. Biotechnology Progress. 2003, 19, 639.

    [11] Mendes, R.; Rocha, I.; Pinto, J. P.; Ferreira, E. C.; Rocha, M. Differential Evolution for the offline and online optimization of fed-batch fermentation process. Studies in Computational Intelligence. 2008, 143, 299.

    [12] Monteagudo, J.; Rodríguez, L.; Rincón, J.; Fuertes, J. Kinetics of lactic acid fermentation by Lactobacillus delbrueckii grown on beet molasses. Journal of Chemical Technology and Biotechnology .1997, 68, 271.

    [13] Nandasana, A. D.; Kumas, S. Kinetic modeling of lactic acid production from molasses using Enterococcus faecalis RKY1. Biochemical Engineering Journal. 2008, 38, 277.

    [14] Niu, D.; Wang, F.; He, D.; Jia, M. A Modified Differential Evolution Algorithm for Feed Rate Optimization of Fed-batch Fermentation. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), art. 2008,4593788,5275.

    [15] Skolapap, W.; Scharer, J. M.; Douglas, P. L.; Moo-Young, M. Fed-batch optimization of α-Amylase and protease-producing Bacillus subtilis using
    Markov Chain Methods. Biotechnology and Bioengineering. 2004, 86, 706.

    [16] Schepers, A. W.; Thibault, J.; Lacroix, C. Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part II:kinetic modeling and model validation. Enzyme and Microbial Technology. 2002, 30, 187.

    [17] Vázquez, J. A.; Murado, M. A. Unstructured mathematical model for biomass, lactic acid and bacteriocin production by lactic acid bacteria in batch fermentation. Journal of Chemical Technology and Biotechnology,.2008, 83, 91.

    [18] Wee, Y. J.; J. N. Kim, et al. Utilization of sugar molasses for economical L(+)-lactic acid production by batch fermentation of Enterococcus faecalis. Enzyme and Microbial Technology. 2004, 35, 568.

    QR CODE