簡易檢索 / 詳目顯示

研究生: 黃柔莉
Yulianti - Theresia Asalui
論文名稱: 以電噴射程序製備聚乳酸-幾丁聚醣核殼式奈米粒子並應用於藥物釋放
Fabrication of PLA-Chitosan Coreshell Nanoparticles by Electrospraying for Drug Delivery
指導教授: 何明樺
Ming-Hua Ho
口試委員: 王孟菊
Meng-Jiy Wang
李忠興
Chung-Hsing Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 147
中文關鍵詞: 同軸電噴射幾丁聚醣核殼型聚乳酸腦血管障壁藥物釋放奈米粒子
外文關鍵詞: coaxial electrospraying, poly lactide
相關次數: 點閱:366下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文中以同軸電噴射(coaxial electrospraying)製造幾丁聚醣(chitosan)與聚乳酸(polylactide, PLA)之核殼型(coreshell)奈米粒子。第一部分探討不同的操作條件包含:流率、電壓、操作距離、溶液濃度等對粒子製備的影響,進而找出製造具有最小及最均勻粒徑之奈米粒子的最佳化條件。結果顯示製備幾丁聚醣奈米粒子最佳化條件為:流率0.5 ml/h 、電壓22 kV 、操作距離12 cm 、幾丁聚醣濃度5 g/L 。而製備核殼型奈米粒子的最佳化條件與上述大致相同,添加0.5 % PLA後,改變操作距離縮短成10 cm,此改變是由於核殼型需要更高的電壓梯度去製備球狀的奈米粒子。
    接著我們藉由培養UMR-106及PC-12細胞,分析奈米粒子之生物相容性及進入細胞的能力。結果顯示,細胞活性隨著奈米粒子濃度上升與培養時間延長而減少。在低粒子濃度的情形下,幾丁聚醣奈米粒子和核殼型顆立皆有非常高的生物相容性。此外,奈米粒子的存在並不會影響到PC-12細胞的分化。
    為了測試奈米粒子在藥物傳遞上的潛能,兩種不同型態的奈米粒子被載入牛血清白蛋白(BSA)並觀察釋放動力模式。釋放曲線分為兩個階段,在第一階段中,BSA的累積釋放濃度快速地隨時間上升,此階段主要是釋出在顆粒表層的蛋白質。在第二階段中,BSA累積釋放濃度上升的速率明顯地下降,此階段主要是釋出包覆於顆粒內部的蛋白質。結果顯示PLA表層可以降低第一階段中的突釋(burst release)行為,能得到緩釋型的較長效釋放曲線。此外,藉由物理吸附及臭氧活化的化學修飾,RGD成功地被固定在幾丁聚醣奈米粒子和核殼型奈米粒上,RGD固定後之奈米粒子型態並無顯著改變。
    藉由體外(in vitro)腦血管障壁(blood brain barrier, BBB)模式的建立,我們得以估算奈米粒子在BBB中的滲透率。結果指出相較於幾丁聚醣奈米粒子,核殼式粒子顯示出較高的滲透率,這是因為PLA的高疏水性增加奈米粒子對細胞膜與緊密連接(tight junction)層的穿透。本研究設計了核殼雙層具有相異性質的核殼式奈米粒子,並將其電噴設製程加以最佳化,最後證實電噴製備之核殼型奈米粒子可當作藥物傳遞之載體穿過BBB。


    In this study, chitosan and chitosan-polylactide (PLA) coreshell nanoparticles were fabricated by coaxial electrospraying setup. In the first part, operation conditions for fabrication of smallest and uniform particles were investigated. The flow rate, applied voltage, working distance and polymer concentration were optimized in this research. Meanwhile, the obtained nanoparticles were characterized for their particle size, zeta potential and chemical composition. For chitosan nanoparticles, the optimized conditions were the flow rate of 0.5 ml/h, the applied voltage of 22 kV, the working distance of 12 cm and the chitosan concentration of 5 g/L. The optimized conditions for preparation of coreshell nanoparticles were basically the same, except for the PLA concentration of 0.5 % and the working distance of 10 cm which was longer than that used for chitosan electrospraying because coreshell needed higher voltage gradient in order to produce spherical nanoparticles. The diameters for chitosan and coreshell nanoparticles were 326 and 344 nm, respectively.
    The analysis of biocompatibility and cellular uptake of nanoparticles were conducted by culturing UMR and PC 12. UMR is an osteogenic cell line and PC12 is renal medulla-derived nerve cells. The results from both of UMR and PC12 indicate that cell viability decreased by increasing nanoparticle concentration and incubation time. With low particle concentration, chitosan and coreshell nanoparticles showed great biocompatibility. The presence of nanoparticles would not affect PC 12 cells differentiation in particular.
    To evaluate nanoparticles potential in drug delivery, both nanoparticles were loaded with model protein, BSA, and the releasing kinetics were observed. The sizes of chitosan and coreshell nanoparticles slightly increased due to BSA loading. The release profiles verify the two-stage releasing where a long-term delivery would be approached in the second stage. Releasing from chitosan nanoparticles was faster that from coreshell ones. More important, by modifying PLA concentration, releasing profile from coreshell nanoparticles can be tailored.
    RGD was successfully immobilized on chitosan and coreshell nanoparticles by physical adsorption and chemical modification induced with ozone activation. The successful immobilization of RGD was identified from EDS analysis, and the morphology of both nanoparticles was not changed significantly after RGD immobilization.
    Mouse brain endothelial cells were cultured on polycarbonate (PC) membrane to establish in vitro blood brain barrier (BBB) model in this research, so the permeation of nanoparticles in BBB was able to be evaluated. Coreshell nanoparticles demonstrated higher permeability compared to the chitosan nanoparticles. This was due to the hydrophobicity of PLA that helped enhance penetration through the barrier. In summary, this research optimized the electrospraying process for the fabrication of coreshell nanoparticles and demonstrated the potential of electrosprayed coreshell nanoparticles as a drug carrier to penetrate BBB.

    摘要 i Abstract ii Acknowledgement iv Contents v Figure List viii Table List xi Equation List xii Abbreviation List xiiiii Chapter 1. Introduction 1 Chapter 2. Literature Review 3 2.1 Introduction to Nanotechnology 3 2.2 Application of Polymeric Nanoparticles in Targeted Delivery 5 2.3 Fabrication of Nanoparticles 7 2.3.1 Solvent Emulsion Evaporation 10 2.3.2 Ionic Gelation 11 2.3.3 Emulsion Spray Drying 12 2.3.4 Electrospraying 13 2.4 Introduction to Electrospraying 13 2.4.1 Parameters in Electrospraying 18 2.4.2 Electrosprayed Nanoparticles in Biomedical Applications 20 2.4.2.1 Electrosprayed Nanoparticles for Biocoating 20 2.4.2.2 Electrosprayed Nanoparticles of Drug Solution for Specific Purposes 21 2.5 Brain Diseases and Disorders 22 2.5.1 Introduction to Blood Brain Barrier and Its Characteristics 23 2.5.2 Penetration to the Blood Brain Barrier 25 2.5.3 Drug Carriers for BBB 28 2.6 Electrosprayed Core-Shell PLA-Chitosan Nanoparticles 30 Chapter 3. Material and Experimental Procedure 34 3.1 Chemicals and Materials 34 3.2 Experimental Apparatus 35 3.3 Experimental Procedure 36 3.3.1 Determination of Molecular Weight of Chitosan 36 3.3.2 Electrospraying of Chitosan and PLA-Chitosan 37 3.3.4 Characterization of Nanoparticles 38 3.3.4.1 Surface morphology of nanoparticles 38 3.3.4.2 Zeta potential measurements 39 3.3.4.3 Chemical composition 39 3.3.4.4 Fluorescence Microscope 39 3.3.5 Nanoparticles Neutralization 40 3.3.6 Evaluation of Protein Encapsulation and Releasing Profile 40 3.3.7 Cell Experiment 41 3.3.7.1 Cell Line 41 3.3.7.2 Cell Sub-Culture 42 3.3.7.3 Preparation of Alpha-Minimum Essential (-MEM) Medium 44 3.3.7.4 Preparation of RPMI 1640 Medium 44 3.3.7.5 Cryopreservation of Cell 45 3.3.7.6 Defreezing the cells 45 3.3.7.7 Cell Counting 46 3.3.8 Biocompatibility Test 47 3.3.9 Peptide Immobilization 49 3.3.10 Permeability Study 50 3.3.10 Statistical Analysis 50 Chapter 4. Results and Discussion 51 4.1 Electrosprayed Chitosan Nanoparticles 51 4.1.1 Effect of Flow Rate 51 4.1.2 Effect of Applied Voltage 53 4.1.3 Effect of Polymer Solution Concentration 55 4.1.4 Effect of Tip to Collector Distance 58 4.1.5 Effect of Needle Gauge 61 4.2 Optimization in Electrospraying of PLA-chitosan Coreshell Nanoparticle 62 4.2.1 Effect of Solvent 63 4.2.2 Effect of PLA Concentration 64 4.2.3 Effect of Flow Rate 67 4.2.4 Effect of Applied Voltage 70 4.2.5 Effect of Working Distance 74 4.2.6 Effect of Inherent Viscosity 77 4.3 Characterization of Optimized Core-Shell Nanoparticles 79 4.3.1 Summary of Optimized Conditions 79 4.3.2 FTIR Analysis 81 4.3.3 TEM Analysis 82 4.3.4 Zeta Potential Analysis 84 4.3.5 EDS Analysis 84 4.3.6 Fluorescence Microscope Analysis 85 4.4. Water Retention Test 87 4.4.1 Water Retention Test for Chitosan Nanoparticles 87 4.4.2 Optimization of Neutralization Process for Chitosan Nanoparticles 89 4.4.2.1 Effect of Neutralization Medium 89 4.4.2.2 Effect of Immersion Period Effect of different neutralization time 92 4.4.3 Water Retention Test for PLA-chitosan Coreshell Nanoparticles 93 4.5. Biocompatibility Test 95 4.6. Drug Loaded Nanoparticles 103 4.6.1 BSA loaded nanoparticles characterization 103 4.6.2 Pre-releasing profile of BSA loaded nanoparticles 104 4.6.3 The Releasing Profile of BSA loaded nanoparticles 105 4.7 Peptide Immobilization 110 4.8. Permeability Study 115 Chapter 5. Conclusion 117 References 119 Appendix 130 A. Determination of Chitosan’s Molecular Weight 130 B. Determination of Nanoparticles’ Size by ImageJ Software 130 C. Calibration Curve of Bovine Serum Albumin in buffer solution (PBS) 131 D. Calibration Curve of Bovine Serum Albumin in Sodium Carbonate (Na2CO3) 131 E. Confluence Day Determination for Cell Experiment (UMR, seeded at 15,000 cells/mL) 132

    1. Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA., Passage of Peptides through the Blood-Brain Barrier with Colloidal Polymer Particles (Nanoparticles). Brain Research 1995 674: p. 171-174.
    2. Jafarinejad S, Kambiz G, Esmaeil M, Mahmoud GK, Abdolhossein RN, Nasir M, Development of chitosan-based nanoparticles for pulmonary delivery of itraconazole as dry powder formulation. Powder Technology 2012. 222: p. 65–70.
    3. Dai H, Jiang X, Tan GC, Chen Y, Torbenson M, Leong KW, Mao HQ, Chitosan-DNA nanoparticles delivered by intrabiliary infusion enhance liver-targeted gene delivery. Int J Nanomedicine, Dec 2006. 1(4): p. 507–522.
    4. Karnchanajindanun J, Mangkorn S, Yodthong B, Genipin-cross-linked chitosan microspheres prepared by a water-in-oil emulsion solvent diffusion method for protein delivery. Carbohydrate Polymers 2011. 85: p. 674–680.
    5. Govender T, Stolnik S, Garnett MC, Illum L, Davis SS, PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. Journal of Controlled Release, 1999. 57(2): p. 171-185.
    6. Chattopadhyay DP, Milind SI, Aqueous Behaviour of Chitosan. International Journal of Polymer Science, 2010. 2010: p. 7.
    7. Wu Y, Clark RL, Electrohydrodynamic atomization: a versatile process for preparing materials for biomedical applications. J. Biomater. Sci. Polymer Edn, 2008. 19(5): p. 573-601.
    8. Zhang S, Kawakami K, Yamamoto M, Masaoka Y, Kataoka M, Yamashita S, Sakuma S, Coaxial Electrospray Formulations for Improving Oral Absorption of a Poorly Water-Soluble Drug. Mol. Pharmaceutics 2011. 8: p. 807–813.
    9. Begley DJ, Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacology & Therapeutics, 2004. 104: p. 29-45.
    10. Jain DS, Rajani BA, Amrita NB, Shruti SS, Peeyush NG, Yuvraj N, Rajiv PG, Poly lactic acid (PLA) nanoparticles sustain the cytotoxic action of temozolomide in C6 Glioma cells. Biomedicine & Aging Pathology, 2013. 3: p. 201-208.
    11. Silva GA, Nanotechnology approaches for drug and small molecule delivery across the blood brain barrier. Surgical Neurology, 2007. 67: p. 113-116.
    12. Wu Y, MacKay JA, McDaniel JR, Chilkoti A, Clark RL, Fabrication of Elastin-Like Polypeptide Nanoparticles for Drug Delivery by Electrospraying. Biomacromolecules, 2009. 10: p. 19-24.
    13. Baji A, Mai YW, Wong SC, Abtahi M, Chen P, Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites Science and Technology 2010. 70: p. 703-718.
    14. Lannutti J, Reneker D, Ma T, Tomasko D, Farson D, Electrospinning for tissue engineering scaffolds. Mater Sci Eng (Biomim Supramol Sys), 2007. 27: p. 504–9.
    15. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63: p. 2223-2253.
    16. Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Wagner S, Buchel C, von Briesen H, Kreuter J, Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. Journal of Controlled Release 2009. 137: p. 78-86.
    17. Karra N, Benita S, The Ligand Nanoparticle Conjugation Approach for Targeted Cancer Therapy. Current Drug Metabolism 2012. 13: p. 22-41.
    18. Chen Y, Mohanraj VJ, Nanoparticles – A Review. Tropical Journal of Pharmaceutical Research, June 2006. 5(1): p. 561-573.
    19. Almeria B, Deng W, Fahmy TM, Gomez A, Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. Journal of Colloid and Interface Science, 2010. 343: p. 125–133.
    20. Palmer, Richard E, Nanobiotechnology : Inorganic Nanoparticles vs Organic Nanoparticles, ed. Jesus M. de la Fuente, V. Grazu. 2012: Elsevier.
    21. Kerimoğlu O, Emine A, Poly(Lactic-Co-Glycolic Acid) Based Drug Delivery Devices For Tissue Engineering And Regenerative Medicine. ANKEM Derg 2012. 26(2): p. 86-98.
    22. Jin S, Leach JC, Ye K, Nanoparticle-Mediated Gene Delivery, in Micro and Nano Technologies in Bioanalysis, Foote, James Weifu Lee and Robert S., Editor. 2009.
    23. Goel A, Baboota S, Sahni JK, Ali J, Synthesis of 6-N, N, N-trimethyltriazole chitosan via click chemistry and evaluation for gene delivery. Int J Pharm Investig., 2013. 3(1): p. 8-14.
    24. Szakacs G, Paterson JK, Ludwig JA, Genthe CB, Gottesman MM, Targeting multidrug resistance in cancer. Nature Reviews | Drug Discovery, 2006. 5: p. 219-234.
    25. Raviv Y, Puri A, Blumenthal R, P-glycoprotein-overexpressing multidrug-resistant cells are resistant to infection by enveloped viruses that enter via the plasma membrane. The FASEB Journal, March 2000. 14: p. 511-515.
    26. Ratnaparkhi MP, Chaudhari SP, Pandya VA, Peptides And Proteins In Pharmaceuticals. International Journal of Current Pharmaceutical Research, 2011. 3(2).
    27. Azimi B, Nourpanah P, Arbab S, Producing Gelatin Nanoparticles as Delivery System for Bovine Serum Albumin. Iran biomed J., 2014. 18(1): p. 34-40.
    28. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE, Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release 2001. 70: p. 1-20.
    29. Mcclean S, Prosser E, Meehan E, O'malley D, Clarke N, Ramtoola Z, Brayden D, Binding and uptake of biodegradable poly-dl-lactide micro- and nanoparticles in intestinal epithelia. Eur. J. Pharm. Sci., 1998. 6: p. 153–163.
    30. Desai MP, Labhasetwar V, Amidon GL, Levy RJ, Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res., 1996. 13: p. 1838–1845.
    31. Raab C, Simko M, Fiedeler U, Nentwich M, Gazso A, Production of nanoparticles and nanomaterials. Institute of Technology Assessment of the Austrian Academy of Sciences, February 2011. 6.
    32. Schmoll LH, Elzey S, Grassian VH, O'shaughnessy PT, Nanoparticle aerosol generation methods from bulk powders for inhalation exposure studies. Nanotoxicology, December 2009. 3(4): p. 265-275.
    33. Akbar S, Hasanain SK, Azmat N, Nadeem M, Synthesis of Fe2O3 nanoparticles by new Sol-Gel method and their structural and magnetic characterizations. 2004.
    34. Chan HK, Kwok PCL, Production methods for nanodrug particles using the bottom-up approach. Advanced Drug Delivery Reviews 2011. 63: p. 406–416.
    35. Ramakrishna, Sridhar R, Seeram, Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter, June 2013. 3(2).
    36. Erden N, Celebi N, Factors influencing release of salbutamol sulphate from poly(lactide-co-glycolide) microspheres prepared by water-in-oil-in-water emulsion technique. International Journal of Pharmaceutics, 1996. 137: p. 57-66.
    37. Bilati U, Alle’Mann E, Doelker E, Poly(D,L-lactide-co-glycolide) protein-loaded nanoparticles prepared by the double emulsion method—processing and formulation issues for enhanced entrapment efficiency. Journal of Microencapsulation, March 2005. 22(2): p. 205–214.
    38. Li Z, Liu K, Sun P, Hao T, Tian Y, Tang Z, Li L, Chen D, Poly (D,L-lactide-co-glycolide)/montmorillonite nanoparticles for improved oral delivery of exemestane. Journal of Microencapsulation, 2013: p. 1-9.
    39. Zahr AS, Villiers MD, Pishko MV, Encapsulation of Drug Nanoparticles in Self-Assembled Macromolecular Nanoshells. Langmuir 2005. 21: p. 403-410.
    40. Zambaux MF, Bonneaux F, Gref R, Maincenc P, Dellacherie E, Alonso MJ, Labrude P, Vigneron C, Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method Journal of Controlled Release 50 (1998) 31–40, 1998. 50: p. 31 - 40.
    41. Jain RA, The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000. 21: p. 2475-2490.
    42. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM, Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. Journal of Controlled Release 2008. 125: p.193–209.
    43. Liu R, Ma G, Meng FT, Su ZG, Preparation of uniform-sized PLA microcapsules by combining Shirasu Porous Glass membrane emulsification technique and multiple emulsion-solvent evaporation method. Journal of Controlled Release, 2005. 103: p. 31-43.
    44. Almeria B, Fahmy TM, Gomez A, A multiplexed electrospray process for single-step synthesis of stabilized polymer particles for drug delivery. Journal of Controlled Release, 2011. 154: p. 203-210.
    45. Valo H, Peltonen L, Vehvilainen S, Karjalainen M, Kostiainen R, Laaksonen T, Hirvonen J, Electrospray encapsulation of hydrophilic and hydrophobic drugs in poly(L-lactic acid) nanoparticles. Small, 2009. 5(15): p. 1791-1798.
    46. Calderon L, Harris R, Diaz MC, Elorza M, Elorza B, Lenoir B, Adriaens E, Remon JP, Heras A, Diaz DC, Nano and microparticulate chitosan-based systems for antiviral topical delivery. European Journal of Pharmaceutical Sciences, 2013. 48: p. 216–222.
    47. Trapani A, Lopedota A, Franco M, Cioffi N, Ieva E, Garcia-Fuentes M, Alonso MJ, A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides J. Pharm. Biopharm, 2010. 75(1): p. 26-32.
    48. Meng JN, Sturgis TF, Youan BBC, Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. European Journal of Pharmaceutical Sciences, 2011. 44: p. 57-67.
    49. Tiyaboonchai W, Limpeanchob N, Formulation and characterization of amphotericin B-chitosan-dextran sulfate nanoparticles. Int. J. Pharm. , 2007. 329: p. 142 – 149.
    50. Sachan NK, Pushkar S, Ghosh SK, Modified ionic gelation method preparation of hydrogel microbeads of a water soluble drug. Bharatiya Vaigyanik evam Audyogik Anusandhan Patrika, 2012. 20(2): p. 171-176.
    51. Songsurang K, Praphairaksit N, Siraleartmukul K, Muangsin N, Electrospray Fabrication Of Doxorubicin-Chitosan-Tripolyphosphate Nanoparticles For Delivery Of Doxorubicin. Arch Pharm Res, 2011. 34(4): p. 583-592.
    52. Giunchedi P, Conti B, Genta I, Conte U, Puglisi G, Emulsion Spray Drying for the Preparatino of Albumin Loaded PLGA Microspheres. Drug Development and Industrial Pharmacy, 2001. 27(7): p. 745-750.
    53. Liu WH, Song JL, Liu K, Chu DF, Li YX, Preparation and in vitro and in vivo release studies of Huperzine A loaded microspheres for the treatment of Alzheimer’s disease. Journal of Controlled Release, 2005. 107: p. 417–427.
    54. Makadia HK, Steven J, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 2011. 3: p. 1377-1397.
    55. He XQ, Pei L, Tong HH, Zheng Y, Comparison of Spray Freeze Drying and the Solvent Evaporation Method for Preparing Solid Dispersions of Baicalein with Pluronic F68 to Improve Dissolution and Oral Bioavailability. AAPS PharmSciTech, 2011. 12(1): p. 104-113.
    56. Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, Yogo T, Electrosprayed Synthesis of Red-Blood-Cell-Like Particles with Dual Modality for Magnetic Resonance and Fluorescence Imaging. Small, 2010. 6(21): p. 2384–2391.
    57. Chakraborty S, Liao IC, Adler A, Leong KW, Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Advanced Drug Delivery Reviews, 2009. 61: p. 1043-1054.
    58. Llompart JR, De La DF, Generation Of Monodisperse Droplets 0.3 To 4 mM In Diameter From Electrified Cone-Jets Of Highly Conducting And Viscous Liquids. Aerosol Science, 1994. 25(6): p. 1093-1119.
    59. Ijsebaert JC, Geerse KB, Marijnissen JC, Lammers JW, Zanen P, Electro-hydrodynamic atomization of drug solutions for inhalation purposes. J Appl Physiol, 2001. 91: p. 2735–2741.
    60. Bock N, Dargaville TR, Woodruff MA, Electrospraying of polymers with therapeutic molecules: State of the art Progress in Polymer Science, 2012. 37: p. 1510– 1551.
    61. Jaworek A, Sobczyk AT, Electrospraying route to nanotechnology: An overview. Journal of Electrostatics, 2008. 66: p. 197–219.
    62. Midhun BT, Shalumon KT, Manzoor K, Jayakumar R, Nair SV, Deepthy M, Deepthy M, Preparation of budesonide-loaded polycaprolactone nanobeads by electrospraying for controlled drug release. J Biomater Sci Polym Ed, 2011. 22: p. 2431-2444.
    63. Xie JW, Lim LK, Phua Y, Hua J, Wang CH, Electrohydrodynamic atomization for biodegradable polymeric particle production. Journal of Colloid and Interface Science, 2006. 302(1): p. 103-112.
    64. Wu Y, Duong A, Lee LJ and Wyslouzil BE, Electrospray Production of Nanoparticles for Drug/Nucleic Acid Delivery in The Delivery of Nanoparticles, Hashim, Dr. Abbass A., Editor. 2012.
    65. Lee YH, Mei F, Bai MY, Zhao S, Chen DR, Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray. Journal of Controlled Release, 2010. 145(1): p. 58-65.
    66. Lee YH, Bai MY, Chen DR, Multidrug encapsulation by coaxial tri-capillary electrospray. Colloids and Surfaces B: Biointerfaces, 2011. 82(1): p. 104-110.
    67. Hwang YK, Jeong U, Cho EC, Production of uniform-sized polymer core-shell microcapsules by coaxial electrospraying. Langmuir, 2008. 24(6): p. 2446–2451.
    68. Burda C, Chen X, Narayanan R, El-Sayed MA, Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 2005. 105: p. 1025-1102.
    69. Deng WW, Klemic JF, Li X, Reed MA, Gomez A, Increase of electrospray throughput using multiplexed microfabricated sources for the scalable generation of monodisperse droplets. Aerosol Science, 2006. 37: p. 696–714.
    70. Yao J, Lim LK, Xie J, Hua J, Wanga CH, Characterization of electrospraying process for polymeric particle fabrication. Aerosol Science, 2008. 39: p. 987–1002.
    71. Ghayempour S, Mortazavi SM, Fabrication of microenanocapsules by a new electrospraying method using coaxial jets and examination of effective parameters on their production. Journal of Electrostatics, 2013. 71: p. 717-727.
    72. Bock N, Woodruff MA, Hutmacher DW, Dargaville TR, Electrospraying, a Reproducible Method for Production of Polymeric Microspheres for Biomedical Applications. Polymers, 2011. 3: p. 131-149.
    73. Fukui Y, Maruyama T, Iwamatsu Y, Fujii A, Tanaka T, Ohmukai Y, Matsuyama H, Preparation of monodispersed polyelectrolyte microcapsules with high encapsulation efficiency by an electrospray technique. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2010. 370 p. 28–34.
    74. Speranza A, Ghadiri M, Newman M, Osseo LS, Ferrari G, Electro-spraying of a highly conductive and viscous liquid. Electrostatics, 2001. 51-52: p. 494-501.
    75. Zhang LL, Huang J, Si T, Xu RX, Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev Med Devices., 2012. 9(6): p. 595-612.
    76. Ikeuchi M, Tane R, Ikuta K, Electrospray deposition and direct patterning of polylactic acid nanofibrous microcapsules for tissue engineering. Biomed Microdevices, 2012. 14: p. 35-43.
    77. Arya N, Chakraborty S, Dube N, Katti DS, Electrospraying: A Facile Technique for Synthesis of Chitosan-Based Micro/Nanospheres for Drug Delivery Applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008: p. 17-31.
    78. Chen DR, David YH, Kaufman SL, Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range. Journal of Aerosol Science, 1995. 26(6): p. 963-977.
    79. Lenggoro IW, Xia B, Okuyama K, Sizing of Colloidal Nanoparticles by Electrospray and Differential Mobility Analyzer Methods. Langmuir, 2002. 18: p. 4584-4591.
    80. Smith KL, Alexander MS, Stark JPW, The role of molar conductivity in electrospray cone-jet mode current scaling. Journal of Applied Physics, 2006. 100(1).
    81. Scholten E, Dhamankar H, Bromberg L, Rutledge GC, Hatton TA, Electrospray as a Tool for Drug Micro- and Nanoparticle Patterning. Langmuir, 2011. 27: p. 6683–6688.
    82. Jaworek A, Micro- and nanoparticle production by electrospraying. Powder Technology, 2007. 176: p. 18-35.
    83. Stanger J, Tucker N, Kirwan K, Coles S, Jacobs D, Staiger MP, Effect of Charge Density on the Taylor cone in Electrospinning. International Journal of Modern Physics B, 2009. 23(06): p. 1956.
    84. Bodnar E, Kiselev P, Rosell J, Effect of relative humidity on the microstructure of electrospray deposited polymer thin films. Nanospain, 2011.
    85. Bodnar E, Kiselev P, Grifoll J, Llompart JR, Morphology dependency of electrospray-generated polymer particles and coatings on ambient humidity.
    86. Gallardo J ,Galliano P, Moreno R, Duran A, Bioactive Sol-Gel Coatings for Orthopaedic Prosthesis. Journal of Sol-Gel Science and Technology, 2000. 19: p. 107–111.
    87. Jing D, Choy KL, Electrostatic spray assisted vapour deposition of TiO2-based films. Solid state ionics, 2004. 173(1): p. 119-124.
    88. Morozov VN, Morozova TY, Electrospray deposition as a method to fabricate functionally active protein films. Analytical chemistry, 1999. 71(7): p. 1415-1420.
    89. Kim BH, Jeong JH, Jeon YS, Jeon KO, Hwang KS, Hydroxyapatite layers prepared by sol-gel assisted electrostatic spray deposition. Ceramics international, 2007. 33(1): p. 119-122.
    90. Barach AL, Silberstein FH, Oppenheimer ET, Hunter T, Soroka M, Inhalation Of Penicillin Aerosol In Patients With Bronchial Asthma, Chronic Bronchitis, Bronchiectasis And Lung Abscess: Preliminary Report. Annals of Internal Medicine, 1945. 22(4): p. 485-509.
    91. Kunkel G, Magnussen H, Bergmann KC, Juergens UR, De Mey C, Freund E, Hinzmann R, Beckers B, RespimatR (a New Soft Mist Inhaler) Delivering Fenoterol plus Ipratropium Bromide Provides Equivalent Bronchodilation at Half the Cumulative Dose Compared with a Conventional Metered Dose Inhaler in Asthmatic Patients. 2000. 67(3): p. 306-314.
    92. Ho L, Pasinetti GM, Polyphenolic compounds for treating neurodegenerative disorders involving protein misfolding. Expert Rev Proteomics, 2010. 7(4): p. 579-589.
    93. Wohlfart S, Gelperina S, Kreuter J, Transport of drugs across the blood brain barrier by nanoparticles. Journal of Controlled Release, 2012. 161(2): p. 264-273.
    94. Wong HL, Wu XY, Bendayan R, Nanotechnological advances for the delivery of CNS therapeutics. Advanced Drug Delivery Reviews, 2012. 64: p. 686–700.
    95. Deli MA, Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochimica et Biophysica Acta, 2009. 1788: p. 892–910.
    96. Rubin LL, Staddon JM, The cell biology of the blood brain barrier Annu. Rev. Neurosci., 1999. 22: p. 11-28.
    97. Brasnjevic I, Harry WM, Steinbusch CS, Martinez PM, Delivery of peptide and protein drugs over the blood–brain barrier. Progress in Neurobiology 2009. 87: p. 212-251.
    98. Stamatovic SM, Keep RF, Andjelkovic AV, Brain endothelial cell-cell junctions: how to "open" the blood brain barrier. Current neuropharmacology, 2008. 6(3): p. 179-192.
    99. Ballabh P, Braun A, Nedergaard M, The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiology of Disease, 2004. 16(1): p. 1-13.
    100. Banks WA, Kastin AJ, Peptides and the blood-brain barrier: lipophilicity as a predictor of permeability. Brain research bulletin, 1985. 15(3): p. 287-292.
    101. Pardridge WM, Biopharmaceutical drug targeting to the brain. J. Drug Target, 2010. 18: p. 157–167.
    102. Schroder U, Sabel BA, Nanoparticles, a drug carrier system to pass the blood-brain barrier, permit central analgesic effects of iv dalargin injections. Brain Research, 1996. 710(1): p. 121-124.
    103. Prasad D, Chauhan H. Key Targeting Approaches for Pharmaceutical Drug Delivery. 2013 [cited April 26th 2014]; Available from: http://www.americanpharmaceuticalreview.com/Featured-Articles/148744-Key-Targeting-Approaches-for-Pharmaceutical-Drug-Delivery/.
    104. Moodley K, Pillay V, Choonara YE, du Toit LC, Ndesendo VM, Kumar P, Cooppan S, Bawa P, Oral drug delivery systems comprising altered geometric configurations for controlled drug delivery. International journal of molecular sciences, 2012. 13(1): p. 18-43.
    105. Chien YW, Lin S, Drug delivery: Controlled release. Encyclopedia of pharmaceutical technology, 2002. 1: p. 811-833.
    106. Van R, Mastrobattista I, Storm E, Hennink G , Schiffelers WE, Raymond M, Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. Journal of Controlled Release, 2011. 150(1): p. 30-36.
    107. Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO, Blood–brain barrier-specific properties of a human adult brain endothelial cell line. The FASEB Journal, 2005. 19(13): p. 1872-1874.
    108. Cohen BE, Bangham AD, Diffusion of small non-electrolytes across liposome membranes. Nature 1972. 236: p. 173–174.
    109. Pauletti GM, Okumu FW, Borchardt RT, Effect of size and charge on the passive diffusion of peptides across Caco-2 cell monolayers via the paracellular pathway. Pharmaceutical research, 1997. 14(2): p. 164-168.
    110. Burgess DJ, Yoon JK, Sahin NO, A novel method of determination of protein stability. PDA Journal of Pharmaceutical Science and Technology, 1992. 46(5): p. 150-155.
    111. Lin JH, Chen IW, Lin TH, Blood-brain barrier permeability and in vivo activity of partial agonists of benzodiazepine receptor: a study of L-663,581 and its metabolites in rats. Journal of Pharmacology and Experimental Therapeutics, 1994. 271(3): p. 1197-1202.
    112. Seelig A, Gottschlich R, Devant RM, A method to determine the ability of drugs to diffuse through the blood-brain barrier. Proc. Natl. Acad. Sci. USA, 1994. 91: p. 68-72.
    113. Gabathuler R, Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiology of Disease, 2010. 37 p. 48-57.
    114. Bickel U, How to Measure Drug Transport across the Blood Brain Barrier. NeuroRx, January 2005. 2(1): p. 15-26.
    115. Demeule M, Currie JC, Bertrand Y, Che C, Nguyen T, Regina A, Gabathuler R, Castaigne JP, Beliveau R, Involvement of the lowdensity lipoprotein receptorrelated protein in the transcytosis of the brain delivery vector Angiopepep-2. Journal of neurochemistry, 2008. 106(4): p. 1534-1544.
    116. Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J, Delivery of loperamide across the blood–brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm. Res., 1997. 14: p. 325–328.
    117. Pardridge WM, Boado, Peptide Drug Delivery to the Brain. Raven Press, New York, 1991.
    118. Triguero D, Buciak J, Pardridge WM, Capillary depletion method for quantification of blood–brain barrier transport of circulating peptides and plasma proteins. J. Neurochem, 1990. 54: p. 1882-1888.
    119. Hulsermann U, Hoffmann MM, Massing U, Fricker G, Uptake of apolipoprotein E fragment coupled liposomes by cultured brain microvessel endothelial cells and intact brain capillaries. Journal of Drug Target, 2009. 17: p. 610-618.
    120. Saltzman WM, Langer R, Transport rates of proteins in porous materials with known microgeometry. Biophysical, 1989. 55(1): p. 163-171.
    121. Rempe R, Cramer S, Huwel S, Galla HJ, Transport of Poly(n-butylcyano-acrylate) nanoparticles across the blood–brain barrier in vitro and their influence on barrier integrity. Biochem. Biophys. Res. Commun., 2011. 406: p. 64-69.
    122. Mahoney MJ, Saltzman WM, Controlled release of proteins to tissue transplants for the treatment of neurodegenerative disorders. J Pharm Sci., December 1996. 85(12): p. 1276-1281.
    123. Camenzind E, Scheerder ID, Overview of drug delivery coatings, in Local Drug Delivery for Coronary Artery Disease: Established and Emerging Applications, Boer, M.J. de, Editor. 2005.
    124. Kim KK, Pack DW, Microspheres for drug delivery, in BioMEMS and Biomedical Nanotechnology. 2006, Springer. p. 19-50.
    125. Neha B, Ganesh B, Preeti K, Drug Delivery to The Brain Using Polymeric Nanoparticles: A Review. International Journal of Pharmaceutical and Life Sciences, 2013. 2(3): p. 107-132.
    126. Andrieux K, Garcia GE, Kim HR, Couvreur P, Colloidal carriers: a promising way to treat central nervous system diseases. Nanoneurosci, 2009. 1: p. 17–34.
    127. Kreuter J, Gelperina S, Use of nanoparticles for cerebral cancer. Tumori, 2008. 94: p. 271–277.
    128. Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA, Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Research, 1995. 674: p. 171-174.
    129. Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J, Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm. Res. , 1999. 16: p. 1564–1569.
    130. Kim DH, Martin DC, Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery, . Biomaterials 2006. 27: p. 3031–3037.
    131. Jalali N, Moztarzadeh F, Mozafari M, Asgari S, Motevalian M, Alhosseini SN, Surface modification of poly(lactide-co-glycolide) nanoparticles by d-a-tocopheryl polyethylene glycol 1000 succinate as potential carrier for the delivery of drugs to the brain. Colloids and Surfaces A: Physicochem. Eng. Aspects 2011. 392: p. 335– 342.
    132. Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu A, Targeted Nanoparticles for drug delivery through the blood–brain barrier for Alzheimer’s disease. Journal of Controlled Release, 2005. 108(2-3): p. 193-214.
    133. Cho KJ, Wang X, Nie S, Therapeutic Nanoparticles for Drug Delivery in Cancer. Clin Cancer Res 2008. 14: p. 1310-1316.
    134. Yuan F, Dellian M, Fukumura D, Leunig M, Da B, Torchilin VP, Jain RK, Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 1995. 55: p. 3752-3756.
    135. Wisse E, Braet F, Luo D, De Zanger R, Jans D, Crabbe E, Vermoesen A, Structure and function of sinusoidal lining cells in the liver. Toxicol Pathol, 1996. 24: p. 100-111.
    136. Hsu ST, Lawrence Y, Effect of Drug Loading on Laser Modified Polymer Biodegradation. Manufacturing Letters 2013. 1 (2013) 66–69: p. 66-69.
    137. Retuert J, Fuentes S, Gonzalez G, Benavente R, Thermal Effect On The Microhardness Of Chitosan Films. Journal of the Chilean Chemical Society, 2000. 45(2): p. 323-327.
    138. Petinakis E, Yu L, Simon G, Dean K, Natural Fibre Bio-Composites Incorporating Poly(Lactic Acid), in Fiber Reinforced Polymers - The Technology Applied for Concrete Repair, Masuelli, Martin Alberto, Editor. 2013.
    139. Grenh A, Grainger CI, Dailey LA, Seijo B, Martin GP, Lo’Pez CR, Forbes B, Chitosan nanoparticles are compatible with respiratory epithelial cells in vitro. European Journal of Pharmaceutical Sciences 2007. 31: p. 73-84.
    140. Kim YS, Moon SJ, Yoo HS, Park MK, Kim IY, Cho BC, Su C, Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances, 2008. 26(1): p. 1-21.
    141. Kumar KS, Kumar VB, Paik P, Recent Advancement in Functional Core-Shell Nanoparticles of Polymers: Synthesis, Physical Properties, and Applications in Medical Biotechnology. Journal of Nanoparticles, 2013. 2013.
    142. Kasaai MR, Calculation of Mark–Houwink–Sakurada (MHS) Equation Viscometric Constants For Chitosan In Any Solvent–Temperature System Using Experimental Reported Viscometric Constants Data. Carbohydrate Polymers 2007. 68: p. 477–488.
    143. Maghami GG, Roberts GAF, Evaluation of The Viscometric Constants For Chitosan. Makromol. Chem. 189,195-200(1988), 1988. 189: p. 195-200.
    144. Yomota C, Miyazaki T, Okada S, Determination of The Viscometric Constants For Chitosan And The Application of Universal Calibration Procedure In Its Gel Permeation Chromatography. Colloid Polym Sci 271:76 82 (1993), 1993. 271: p. 76-82.
    145. Thien DH, Preparation And Application Of Chitosan Electrosprayed Nanoparticles And Electrospun Nanofibers, in Chemical Engineering. 2012, NTUST: Taipei.
    146. Hu JF, Li SF, Nair GR, Wu WT, Predicting chitosan particle size produced by electrohydrodynamicatomization. Chemical Engineering Science, 2012. 82: p. 159–165.
    147. Choi JS, Kim Y, Kang J, Jeong SY, Yoo HS, Electrospun Chitosan Microspheres for Complete Encapsulation of Anionic Proteins: Controlling Particle Size and Encapsulation Efficiency. American Association of Pharmaceutical Scientists PharmSciTech 2013.
    148. Festag R, Alexandratos SD, Joy DC, Wunderlich B, Annis B, Cook KD, Effects of molecular entanglements during electrospray of high molecular weight polymers. Journal of the American Society for Mass Spectrometry, 1998. 9(4): p. 299-304.
    149. Hu CM, Zhao J, Cui W, Fabrication And Surface Characterization Of Electrosprayed Poly(L-Lactide) Microspheres. Journal of Applied Polymer Science, 2012. 128(5): p. 3177-3183.
    150. Ding L, Lee T, Wang CH, Fabrication of monodispersed Taxol-loaded particles using electrohydrodynamic atomization. Journal of Controlled Release 2005. 102: p. 395-413.
    151. Hazeri N, Tavanai H, Moradi AR, Production and properties of electrosprayed sericin nanopowder. Science and Technology of Advanced Materials, 2012. 13(3): p. 035010.
    152. Kuo SM, Niu GCC, Chang SJ, Kuo CH, Bair MS, A One-Step Method for Fabricating Chitosan Microspheres. Journal of Applied Polymer Science, 2004. 94: p. 2150–2157.
    153. Macossay J, Marruffo A, Rincon R, Eubanks T, Kuang A, Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly(methyl methacrylate) Polym. Adv. Technol., 2007. 18: p. 180-183.
    154. Maron SH, Nakajima N, Krieger IM, Study of entanglement of polymers in solution by viscosity measurements. Journal of Polymer Science, 1959. 37(131): p. 1-18.
    155. Yao FL, Chen W, Wang H, Liu H, Yao K, Sun P, Lin H, A study on cytocompatible poly(chitosan-g-L-lactic acid). Polymer 2003. 44: p. 6435–6441.
    156. Aktaş Y, Andrieux K, Alonso MJ, Calvo P, Gursoy RN, Couvreur P, CapanY, Preparation and in vitro evaluation of chitosan nanoparticles containing a caspase inhibitor. International Journal of Pharmaceutics, July 2005. 298(2): p. 378-383.
    157. Trapani A, Giglio ED, Cafagna D, Denora N, Agrimi G, Cassano T, Gaetani S, Cuomo V, Trapani G, Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. International Journal of Pharmaceutics, 31 October 2011. 419(1-2): p. 296-307.
    158. Bravo-Osuna I, Vauthier C, Chacun H, Ponchel G, Specific permeability modulation of intestinal paracellular pathway by chitosan-poly(isobutylcyanoacrylate) core-shell nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, June 2008. 69(2): p. 436-444.
    159. Wang M, Zhang Y, Feng J, Gu T, Dong Q, Yang X, Sun Y, Wu Y, Chen Y, Kong W, Preparation, characterization, and in vitro and in vivo investigation of chitosan-coated poly (d,l-lactide-co-glycolide) nanoparticles for intestinal delivery of exendin-4. Int J Nanomedicine, 2013. 8: p. 1141-1154.
    160. Stolnik S, Illum L, SS Davis, Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, September 1995. 16(2-3): p. 195–214.
    161. Storm G, Sheila O. Belliot, Toos Daemen, Danilo D. Lasic, Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Advanced Drug Delivery Reviews, October 1995. 17(1): p. 31–48.
    162. New N, Tetsuya Furuike and Hiroshi Tamura The Mechanical and Biological Properties of Chitosan Scaffolds for Tissue Regeneration Templates Are Significantly Enhanced by Chitosan from Gongronella butleri. Materials 2009. 2(2): p. 374-398.
    163. Lopez-Carballo G, Higueras L, Gavara R, Hernandez-Munoz P, Silver ions release from antibacterial chitosan films containing in situ generated silver nanoparticles. J Agric Food Chem, 2013 61(1): p. 260-267.
    164. Sangsanoh P, Pitt Supaphol, Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules, 2006. 7(10): p. 2710-2714.
    165. Zamani F, Amani-Tehran M, Latifi M, Shokrgozar MA, The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation. Journal of Materials Science: Materials in Medicine, 2013. 24(6): p. 1551-1560.
    166. Panariti A, Giuseppe M, Rivolta I, The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Dove Press Journal: Nanotechnology, Science and Applications, 2012. 5: p. 87-100.
    167. Crow BB, Borneman AF, Hawkins DL, Smith GM, Nelson KD, Evaluation of in vitro drug release, pH change, and molecular weight degradation of poly (L-lactic acid) and poly (D, L-lactide-co-glycolide) fibers. Tissue engineering, 2005. 11(7-8): p. 1077-1084.
    168. Das KP, Freudenrich TM, Mundy WR, Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures. Neurotoxicology and teratology, 2004. 26(3): p. 397-406.
    169. Davson H, Danielli JF, The permeability of natural membranes. The permeability of natural membranes., 1943.
    170. Huang X, Brazel CS, On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release, 2001. 73(2): p. 121-136.
    171. Han N, Bradley PA, Johnson J, Parikh KS, Hissong A, Calhoun MA, Lannutti JJ, Winter JO, Effects of hydrophobicity and mat thickness on release from hydrogel-electrospun fiber mat composites. Journal of Biomaterials Science, Polymer Edition, 2013. 24(17): p. 2018–2030.
    172. Buxton GA, Clarke N, Drug diffusion from polymer core-shell nanoparticles. Soft Matter, 2007. 3(12): p. 1513-1517.
    173. Lu W, Park TG, Protein release from poly(lactic-co-glycolic acid) microspheres: protein stability problem. Pharm. Sci. Technol., 1995. 49(1): p. 13-19.
    174. Cohen S, Chen L, Apte RN, Controlled release of peptides and proteins from biodegradable polyester microspheres: an approach for treating infectious diseases and malignancies. React Polym, 1995. 25: p. 177-187.
    175. Lambiase A, Bonini S, Use of nerve growth factor in eye-drops for therapy of pathologies of the central nervous system, such as alzheimer's and parkinson's disease Publication, US Patent Application, Editor. 2009: United States.
    176. Gunning PW, Landreth GE, Layer P, Ignatius M, Shooter EM, Nerve Growth Factor-Induced Differentiation Of Pc12 Cells: Evaluation Of Changes In Rna And Dna Metabolism. Neuroscience, 1981. 1(4): p. 368-379.
    177. Huh JB, Lee JY, Jeon YC, Shin SW, Ahn JS, Ryu JJ, Physical stability of arginine-glycine-aspartic acid peptide coated on anodized implants after installation. The journal of advanced prosthodontics, 2013. 5(2): p. 84-91.
    178. Han HD, Mangala LS, Lee JW, Shahzad MM, Kim HS, Shen D, Nam EJ, Mora EM, Stone RL, Lu C, Lee SJ, Roh JW, Nick AM, Lopez-Berestein G, Sood AK, Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clinical Cancer Research, 2010. 16(15): p. 3910-3922.
    179. Ho MH, Hou LT, Tu CY, Hsieh HJ, Lai JY, Chen WJ, Wang DM, Promotion of cell affinity of porous PLLA scaffolds by immobilization of RGD peptides via plasma treatment. Macromolecular bioscience, 2006. 6(1): p. 90-98.
    180. Zou LL, Ma JL, Wang T, Yang TB, Liu CB, Cell-penetrating peptide-mediated therapeutic molecule delivery into the central nervous system. Current neuropharmacology, 1997. 11(2): p. 197.
    181. Patel D, Wu J, Chan P, Upreti S, Turcotte G, Ye T, Surface modification of low density polyethylene films by homogeneous catalytic ozonation. Chemical Engineering Research and Design, 2012. 90(11): p. 1800-1806.
    182. Miliauskas G, Venskutonis PR, Van Beek TA, Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food chemistry, 2004. 85(2): p. 231-237.
    183. Eren HA, Avinc O, Uysal P, Wilding M, The effects of ozone treatment on polylactic acid (PLA) fibres. Textile Research Journal, 2011. 81(11): p. 1091-1099.
    184. Wang Y, Kim JH, Choo KH, Lee YS, Lee CH, Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. Journal of Membrane Science, 2000. 169(2): p. 269-276.
    185. Ho MH, Wang DM, Hsieh HJ, Liu HC, Hsien TY, Lai JY, Hou LT, Preparation and characterization of RGD-immobilized chitosan scaffolds. Biomaterials, 2005. 26(16): p. 3197-3206.
    186. Brown RC, Morris AP, O'neil RG, Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Research, 2007. 1130: p. 17-30.
    187. Kuo YC, Chen HH, Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood-brain barrier. International Journal of Pharmaceutics, 2006. 327(1): p. 160-169.
    188. Zhou JB, Patel TR, Sirianni RW, Strohbehn G, Zheng MQ, Duong N, Schafbauer T, Huttner A, Huang Y, Carson RE, Zhang Y, Sullivan DJ, Piepmer JM, Saltzman WM, Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proceedings of the National Academy of Sciences, 2013. 110(29): p. 11751-11756.

    QR CODE