簡易檢索 / 詳目顯示

研究生: 陳柏蒼
PO-TSANG CHEN
論文名稱: 利用DLP-SLA製造高深寬比微流道晶片
Using DLP-SLA to Manufacture High-Aspect-Ratio Microchannel Chips
指導教授: 陳品銓
Pin-Chuan Chen
口試委員: 林鼎晸
Ding-Zheng Lin
曹嘉文
Chia-Wen Tsao
李昇憲
Sheng-Shian Li
饒達仁
Da-Jeng Yao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 124
中文關鍵詞: 微流道晶片高深寬比微流道3D列印DLP-SLA樹脂材料
外文關鍵詞: Microchannel chip, high-aspect-ratio microchannel, 3D printing, DLP-SLA, resin material
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們基於DLP-SLA列印技術開發了兩種用於微流道晶片製造的製程,第一種是透過針對列印中的參數進行調整,成功的以25μm作為模具流道區域的列印層厚,250的影像灰度(Gray scale)製造50μm×50μm的微流道母模具,並透過高分子翻模以及氧電漿異質黏合等技術製造出微流道晶片,第二種則是針對列印策略的進行探討,在不改變材料之配方下透過將微流道晶片之列印過程切分成不同階段,並分別設定不同的列印參數進行列印。而我們成功的以此製程製造出深寬比達1:40(寬度為100μm)之微流道晶片。在本研究中我們將實驗分成兩個階段,第一個階段實驗主要用來探討使用材料之列印參數,並透過製造微流道母模具以瞭解其列印特性,在此階段中我們針對列印參數進行探討,發現在母模具之流道尺寸為50μm×50μm時,列印層厚設定為25μm,可以獲得良好的邊緣夾角(角度誤差<1%),並在後續設計兩種方法以針對寬度誤差進行補償;而在第二階段實驗則是探討製程中的各項因子對通道成型的影響,並以此改良列印方法,實驗結果顯示:(1)透過分段列印控制不同階段的列印層厚,以使用較小的層厚(20μm)列印通道區域,改善通道側壁之粗糙度。(2)光能將會累積在通道區域的樹脂中,而空氣中的氧氣能夠對樹脂的聚合反應進行抑制。


    In this research, we developed two manufacturing processes for micro-channel chips manufacturing based on DLP-SLA printing technology. The first is to adjust the printing parameters, and successfully use 25μm as the printing layer thickness of the top area, 250 of the image gray scale to make a micro-channel mold, witch the channel size is 50μm×50μm, and make the microchannel chip with polymer casting and oxygen plasma bonding. The second is to study the printing strategy. By dividing the printing process of the microfluidic chip into different stages, and setting different printing parameters for printing, and successfully make the high aspect ratio micro channel chips by this process. The maximum aspect ratio is 1:40 (100μm in width). There are two parts of the experiment in this research. The first part of the experiment is to explore the printing parameters of the materials used, and to understand the printing method through the manufacture of micro-channal molds. In this part, we discuss the printing parameters, and when the channel size of the mold is 50μm×50μm, and the printing layer thickness is set to 25μm, the channel angle error <1%, and two methods are subsequently designed to compensate for the width error. The second part of the experiment is to explore the influence of various factors in the process on the formation of the channel, and to improve the printing method. The experimental results show: (1) Control the printing layer thickness at different stages through segmented printing, so as to use a smaller layer thickness (20μm) to print the channel area and improve the roughness of the sidewall of the channel. (2) The light dose will accumulate in the resin in the channel area, and the oxygen in the air can inhibit the polymerization reaction of the resin.

    摘要 III Abstract IV 致謝 V 目錄 VI 圖目錄 X 表目錄 XVII 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 4 1.3 研究方法 6 1.4 論文架構 10 第2章 文獻回顧 12 2.1. 傳統製程微流道晶片 13 2.1.1 微銑削 13 2.1.2 射出成型技術 14 2.1.3 壓印技術 16 2.1.4 PDMS鑄造成型技術 17 2.1.5 軟微影技術 19 2.1.6 雷射雕刻技術 20 2.2. 一體成型式微流道晶片 22 2.2.1 飛秒雷射加工 22 2.2.2 積層製造技術 25 第3章 微流道製程介紹 34 3.1 DLP-SLA列印機簡介 34 3.2 列印檔案準備 37 3.2.1 模型之建立 37 3.2.2 模型切層與預處理 37 3.3 以DLP-SLA結合翻模製程製造微流道晶片 39 3.3.1 母模具製造 39 3.3.2 PDMS微流道製作 41 3.3.3 氧電漿結合 43 3.4 以DLP-SLA直接製造一體成型式微流道晶片 45 3.4.1 樹脂材料之列印參數計算 46 3.4.2列印一體成型式微流道晶片 51 3.4.3 微流道晶片之後處理 53 第4章 實驗設備與實驗方法 55 4.1 研究設備 55 4.1.1 製程設備 55 4.1.2 量測設備與軟體 60 4.2 研究方法 63 4.2.1 不同灰度之投影圖案對關鍵參數的影響 65 4.2.2 不同列印參數對母模具尺寸與成型的影響 67 4.2.3 透過分段列印探討列印參數對通道成型的影響 68 4.2.4 氧氣用於抑制固化反應對通道成型的影響 71 4.2.5 高深寬比一體成型式微流道晶片製造 72 第5章 實驗結果與討論 73 5.1 不同灰度之投影圖案對關鍵參數的影響 73 5.2 不同列印參數對母模具尺寸與成型的影響 75 5.3 透過分段列印探討列印參數對通道成型的影響 79 5.4 氧氣用於抑制固化反應對通道成型的影響 82 5.5 高深寬比一體成型式微流道晶片製造 84 第6章 結論與未來展望 86 6.1 結論 86 6.2 未來展望 88 參考文獻 89 附錄A 光在樹脂中的特性 98 A.1 Beer-Lambert定律 98 A.2 Jacobs工作曲線 99 附錄B 流道母模具SEM圖 101 附錄C 微流道截面SEM圖 103 附錄D 列印機之校正方法 105 D-1 成型平台之校正: 105 D-2 聚焦平面之校正: 105

    [1] Parker, E. K., Nielsen, A. V., Beauchamp, M. J., Almughamsi, H. M., Nielsen, J. B., Sonker, M., ... & Woolley, A. T. (2019). 3D printed microfluidic devices with immunoaffinity monoliths for extraction of preterm birth biomarkers. Analytical and bioanalytical chemistry, 411(21), 5405-5413.
    [2] Zhang, R., & Larsen, N. B. (2017). Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks. Lab on a Chip, 17(24), 4273-4282.
    [3] Waldbaur, A., Rapp, H., Länge, K., & Rapp, B. E. (2011). Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Analytical Methods, 3(12), 2681-2716.
    [4] Chen, P. C., & Duong, L. H. (2016). Novel solvent bonding method for thermoplastic microfluidic chips. Sensors and Actuators B: Chemical, 237, 556-562.
    [5] Nayak, N. C., Yue, C. Y., Lam, Y. C., & Tan, Y. L. (2010). Thermal bonding of PMMA: effect of polymer molecular weight. Microsystem technologies, 16(3), 487-491.
    [6] Chen, P. C., Liu, Y. M., & Chou, H. C. (2016). An adhesive bonding method with microfabricating micro pillars to prevent clogging in a microchannel. Journal of Micromechanics and Microengineering, 26(4), 045003.
    [7] Liu, J., Qiao, H., Liu, C., Xu, Z., Li, Y., & Wang, L. (2009). Plasma assisted thermal bonding for PMMA microfluidic chips with integrated metal microelectrodes. Sensors and Actuators B: Chemical, 141(2), 646-651.
    [8] Nguyen, N. T., & Wu, Z. (2004). Micromixers—a review. Journal of micromechanics and microengineering, 15(2), R1.
    [9] Malek, C. K., & Saile, V. (2004). Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and-systems: a review. Microelectronics journal, 35(2), 131-143.
    [10] Guckenberger, D. J., de Groot, T. E., Wan, A. M., Beebe, D. J., & Young, E. W. (2015). Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab on a Chip, 15(11), 2364-2378.
    [11] Lopes, R., Rodrigues, R. O., Pinho, D., Garcia, V., Schütte, H., Lima, R., & Gassmann, S. (2015, March). Low cost microfluidic device for partial cell separation: Micromilling approach. In 2015 IEEE International Conference on Industrial Technology (ICIT) (pp. 3347-3350). IEEE.
    [12] Ku, X., Zhang, Z., Liu, X., Chen, L., & Li, G. (2018). Low-cost rapid prototyping of glass microfluidic devices using a micromilling technique. Microfluidics and Nanofluidics, 22(8), 1-8.
    [13] Attia, U. M., Marson, S., & Alcock, J. R. (2009). Micro-injection moulding of polymer microfluidic devices. Microfluidics and nanofluidics, 7(1), 1.
    [14] Mair, D. A., Geiger, E., Pisano, A. P., Fréchet, J. M., & Svec, F. (2006). Injection molded microfluidic chips featuring integrated interconnects. Lab on a Chip, 6(10), 1346-1354.
    [15] Guo, J., Liu, K., Wang, Z., & Tnay, G. L. (2017). Magnetic field-assisted finishing of a mold insert with curved microstructures for injection molding of microfluidic chips. Tribology International, 114, 306-314.
    [16] Kitsara, M., & Ducrée, J. (2013). Integration of functional materials and surface modification for polymeric microfluidic systems. Journal of Micromechanics and Microengineering, 23(3), 033001.
    [17] Tsao, C. W., Chen, T. Y., Woon, W. Y., & Lo, C. J. (2012). Rapid polymer microchannel fabrication by hot roller embossing process. Microsystem technologies, 18(6), 713-722.
    [18] Koerner, T., Brown, L., Xie, R., & Oleschuk, R. D. (2005). Epoxy resins as stamps for hot embossing of microstructures and microfluidic channels. Sensors and Actuators B: Chemical, 107(2), 632-639.
    [19] Greener, J., Li, W., Ren, J., Voicu, D., Pakharenko, V., Tang, T., & Kumacheva, E. (2010). Rapid, cost-efficient fabrication of microfluidic reactors in thermoplastic polymers by combining photolithography and hot embossing. Lab on a Chip, 10(4), 522-524.
    [20] McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., Schueller, O. J., & Whitesides, G. M. (2000). Fabrication of microfluidic systems in poly (dimethylsiloxane). ELECTROPHORESIS: An International Journal, 21(1), 27-40.
    [21] Chung, C., Chen, Y. J., Chen, P. C., & Chen, C. Y. (2015). Fabrication of PDMS passive micromixer by lost-wax casting. International journal of precision engineering and manufacturing, 16(9), 2033-2039.
    [22] Sun, M., Xie, Y., Zhu, J., Li, J., & Eijkel, J. C. (2017). Improving the resolution of 3D-Printed molds for microfluidics by iterative casting-shrinkage cycles. Analytical chemistry, 89(4), 2227-2231.
    [23] Faustino, V., Catarino, S. O., Lima, R., & Minas, G. (2016). Biomedical microfluidic devices by using low-cost fabrication techniques: A review. Journal of biomechanics, 49(11), 2280-2292.
    [24] Wang, S., Feng, D., Hu, C., & Rezai, P. (2018). The simple two-step polydimethylsiloxane transferring process for high aspect ratio microstructures. Journal of Semiconductors, 39(8), 086001.
    [25] Rammohan, A., Dwivedi, P. K., Martinez-Duarte, R., Katepalli, H., Madou, M. J., & Sharma, A. (2011). One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8. Sensors and Actuators B: Chemical, 153(1), 125-134.
    [26] Li, Y., Wu, P., Luo, Z., Ren, Y., Liao, M., Feng, L., ... & He, L. (2015). Rapid fabrication of microfluidic chips based on the simplest LED lithography. Journal of Micromechanics and Microengineering, 25(5), 055020.
    [27] Bäuerle, D. (2013). Laser processing and chemistry. Springer Science & Business Media.
    [28] 鄭中緯,飛秒雷射之精微加工技術,機械工業雜誌,2013年2月號
    [29] 李銘峯, 許芳文, 吳秉翰, 蘇信嘉, 曹宏熙, & 胡杰. (2009). 利用飛秒雷射微奈米加工技術於玻片上製作高深寬比之微流道結構. Journal of Science and Engineering Technology, 5(4), 49-55.
    [30] Hong, T. F., Ju, W. J., Wu, M. C., Tai, C. H., Tsai, C. H., & Fu, L. M. (2010). Rapid prototyping of PMMA microfluidic chips utilizing a CO 2 laser. Microfluidics and nanofluidics, 9(6), 1125-1133.
    [31] Osellame, R., Hoekstra, H. J., Cerullo, G., & Pollnau, M. (2011). Femtosecond laser microstructuring: an enabling tool for optofluidic lab‐on‐chips. Laser & Photonics Reviews, 5(3), 442-463.
    [32] Ng, J. C. (2017). Fabrication and Characterization of Linear and Nonlinear Photonic Devices in Fused Silica by Femtosecond Laser Writing (Doctoral dissertation, University of Toronto (Canada)).
    [33] Liao, Y., Cheng, Y., Liu, C., Song, J., He, F., Shen, Y., ... & Midorikawa, K. (2013). Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration. Lab on a Chip, 13(8), 1626-1631.
    [34] Paiè, P., Bragheri, F., Vazquez, R. M., & Osellame, R. (2014). Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels. Lab on a Chip, 14(11), 1826-1833.
    [35] Paiè, P., Bragheri, F., Di Carlo, D., & Osellame, R. (2017). Particle focusing by 3D inertial microfluidics. Microsystems & nanoengineering, 3(1), 1-8.
    [36] Amin, R., Knowlton, S., & Hart, A. (2016). 3D-printed microfluidic devices. Biofabrication, 8 (2): 022001.
    [37] Kitson, P. J., Rosnes, M. H., Sans, V., Dragone, V., & Cronin, L. (2012). Configurable 3D-Printed millifluidic and microfluidic ‘lab on a chip’reactionware devices. Lab on a Chip, 12(18), 3267-3271.
    [38] Lee, M. P., Cooper, G. J., Hinkley, T., Gibson, G. M., Padgett, M. J., & Cronin, L. (2015). Development of a 3D printer using scanning projection stereolithography. Scientific reports, 5(1), 1-5.
    [39] Au, A. K., Huynh, W., Horowitz, L. F., & Folch, A. (2016). 3D‐printed microfluidics. Angewandte Chemie International Edition, 55(12), 3862-3881.
    [40] Parker, E. K., Nielsen, A. V., Beauchamp, M. J., Almughamsi, H. M., Nielsen, J. B., Sonker, M., ... & Woolley, A. T. (2019). 3D printed microfluidic devices with immunoaffinity monoliths for extraction of preterm birth biomarkers. Analytical and bioanalytical chemistry, 411(21), 5405-5413.
    [41] Beauchamp, M. J., Nielsen, A. V., Gong, H., Nordin, G. P., & Woolley, A. T. (2019). 3D printed microfluidic devices for microchip electrophoresis of preterm birth biomarkers. Analytical chemistry, 91(11), 7418-7425.
    [42] Beauchamp, M. J., Nordin, G. P., & Woolley, A. T. (2017). Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Analytical and bioanalytical chemistry, 409(18), 4311-4319.
    [43] Qattawi, A., Alrawi, B., & Guzman, A. (2017). Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach. Procedia Manufacturing, 10, 791-803.
    [44] Nelson, M. D., Ramkumar, N., & Gale, B. K. (2019). Flexible, transparent, sub-100 µm microfluidic channels with fused deposition modeling 3D-printed thermoplastic polyurethane. Journal of Micromechanics and Microengineering, 29(9), 095010.
    [45] Kim, G. B., Lee, S., Kim, H., Yang, D. H., Kim, Y. H., Kyung, Y. S., ... & Kim, N. (2016). Three-dimensional printing: basic principles and applications in medicine and radiology. Korean journal of radiology, 17(2), 182-197.
    [46] Ukita, Y., Takamura, Y., & Utsumi, Y. (2016). Direct digital manufacturing of autonomous centrifugal microfluidic device. Japanese Journal of Applied Physics, 55(6S1), 06GN02.
    [47] Su, C. K., Peng, P. J., & Sun, Y. C. (2015). Fully 3D-printed preconcentrator for selective extraction of trace elements in seawater. Analytical chemistry, 87(13), 6945-6950.
    [48] Gong, H., Beauchamp, M., Perry, S., Woolley, A. T., & Nordin, G. P. (2015). Optical approach to resin formulation for 3D printed microfluidics. RSC advances, 5(129), 106621-106632.
    [49] Gong, H., Bickham, B. P., Woolley, A. T., & Nordin, G. P. (2017). Custom 3D printer and resin for 18 μm× 20 μm microfluidic flow channels. Lab on a Chip, 17(17), 2899-2909.
    [50] Gong, H., Woolley, A. T., & Nordin, G. P. (2018). 3D printed high density, reversible, chip-to-chip microfluidic interconnects. Lab on a Chip, 18(4), 639-647.
    [51] Beauchamp, M. J., Gong, H., Woolley, A. T., & Nordin, G. P. (2018). 3D printed microfluidic features using dose control in X, Y, and Z dimensions. Micromachines, 9(7), 326.
    [52] Schmidleithner, Christina, and Deepak M. Kalaskar. "Stereolithography." IntechOpen, 2018. 1-22.
    [53] Schmidleithner, C., & Kalaskar, D. M. (2018). Stereolithography. IntechOpen.
    [54] Ching, T., Toh, Y. C., & Hashimoto, M. (2020). Fabrication of complex 3D fluidic networks via modularized stereolithography. Advanced Engineering Materials, 22(3), 1901109.
    [55] Tang, L., & Lee, N. Y. (2010). A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature. Lab on a Chip, 10(10), 1274-1280.
    [56] Behroodi, E., Latifi, H., & Najafi, F. (2019). A compact LED-based projection microstereolithography for producing 3D microstructures. Scientific reports, 9(1), 1-14.
    [57] Tumbleston, J. R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A. R., Kelly, D., ... & DeSimone, J. M. (2015). Continuous liquid interface production of 3D objects. Science, 347(6228), 1349-1352.
    [58] Rosenbaum, E. (2011). Optical characterization of potential drugs and drug delivery systems (Doctoral dissertation, Kemiska institutionen, Umeå universitet).

    無法下載圖示 全文公開日期 2026/08/13 (校內網路)
    全文公開日期 2026/08/13 (校外網路)
    全文公開日期 2026/08/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE