簡易檢索 / 詳目顯示

研究生: 杭后健
Hou-Jian Hang
論文名稱: 燒結參數對於氧化鋯贋復體緻密化及性能之影響
Effect of Sintering Parameters on Densification and Properties of Zirconia Prosthesis
指導教授: 施顯章
Hsien-Chang Shih
口試委員: 邱顯堂
Hsien-Tang Chiu
林顯群
Sheam-Chyun Lin
陳明志
Ming-Jyh Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 64
中文關鍵詞: 氧化鋯贋復牙齒光固化3D列印燒結
外文關鍵詞: Zirconia, Dental restorations, Vat photopolymerization, Sintering
相關次數: 點閱:201下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光固化列印具有低成本、高精度與高表面品質的優點,適合用於贋復牙齒的製造,以替代目前高成本的切銷加工技術。然而,氧化鋯材料的3D列印仍具許多挑戰,透過光固化列印製作出之陶瓷綠胚,在高溫熱處理過程中,因大量的材料抽離,造成其尺寸與性能的不穩定。本研究透過LCD列印技術製作出氧化鋯綠胚,並分別以1280°C、1350°C、1480°C及60 分鐘、120 分鐘、180 分鐘,共9組參數組合進行燒結,最後透過其相對密度、尺寸收縮、微觀形貌與硬度探討其緻密化及性能。燒結後氧化鋯胚體之整體相對密度落在79%~89% 範圍之內,顯示出緻密不完全。依據燒結參數之變化與其對應之平均收縮率結果,燒結溫度越高,平均收縮率也越高,在5500倍率的SEM影像上可觀察到溫度越高,晶粒越緊密,晶粒顆粒越大,這也代表其抵抗外力的能力越高,而硬度檢測結果也顯示較高之燒結溫度可獲得較高之平均硬度。持溫時間的變化則在本文中對於氧化鋯胚體緻密化與性能的影響不明顯。


    Vat photopolymerization offers the advantages of low cost, high precision, and high surface quality, making it suitable for the production of counterfeit dental restorations, replacing the currently expensive cutting techniques. However, 3D printing of zirconia material still poses many challenges. Ceramic green bodies produced through vat photopolymerization tend to experience dimensional and performance instability during high-temperature heat treatment due to material shrinkage. In this study, zirconia green bodies were fabricated using LCD process, and they were sintered using nine different parameter combinations of temperatures (1280°C, 1350°C, 1480°C) and dwell times (60 min, 120 min, 180 min). The sintered samples were then analyzed in terms of relative density, dimensional shrinkage, microstructure, and hardness to investigate densification and performance. The overall relative density of the sintered bodies fell within the range of 79%-89%, indicating incomplete densification. Based on the variation in average shrinkage rates with different sintering parameters, higher sintering temperatures led to higher average shrinkage rates. Under a 5500x magnification SEM, it was observed that higher temperatures resulted in denser grain structures with larger grain sizes, suggesting improved resistance to external forces and higher hardness. However, the variation in holding time did not show a significant impact on densification and performance of zirconia green bodies in this study.

    摘要....................................I Abstract...............................II 致謝..................................III 符號定義................................IV 目錄.....................................V 圖目錄..................................VII 表目錄...................................IX 第一章 緒論................................1 1.1 前言...................................1 1.2 研究背景及動機..........................2 第二章 文獻回顧.............................4 2.1 光固化成型技術..........................4 2.2 氧化鋯基本性質..........................8 2.3 陶瓷燒結...............................9 2.4 氧化鋯3D列印之研究現況..................11 2.5 氧化鋯3D列印後處理.....................11 2.5.1 脫脂................................12 2.5.2 燒結................................15 第三章 實驗方法............................17 3.1 實驗流程...............................17 3.2 實驗設備及原理..........................20 3.3 氧化鋯懸浮液漿料調配.....................6 3.4 光固化列印..............................31 3.4.1 列印參數尋找...........................33 3.5 脫脂及燒結參數設計.......................34 第四章 實驗結果與討論........................37 4.1 列印及後處理成果.........................37 4.2 收縮率量測...............................39 4.3 相對密度量測.............................47 4.4 表面硬度.................................52 4.5 微觀形貌觀察.............................55 第五章 結論與未來展望.........................59 5.1 結論....................................59 5.2 未來展望................................60 參考文獻.....................................61

    1. Schweiger, J., Bomze, D., and Schwentenwein, M., 3D printing of zirconia–what is the future? Current Oral Health Reports, 2019. 6, 339-343.
    2. Moon, W., Kim, S., Lim, B.-S., Park, Y.-S., Kim, R.J.-Y., and Chung, S.H., Dimensional accuracy evaluation of temporary dental restorations with different 3D printing systems. Materials, 2021. 14, 1487.
    3. Wei, L., Zhang, J., Yu, F., Zhang, W., Meng, X., Yang, N., and Liu, S., A novel fabrication of yttria-stabilized-zirconia dense electrolyte for solid oxide fuel cells by 3D printing technique. International Journal of Hydrogen Energy, 2019. 44, 6182-6191.
    4. Sun, J., Binner, J., and Bai, J., 3D printing of zirconia via digital light processing: Optimization of slurry and debinding process. Journal of the European Ceramic Society, 2020. 40, 5837-5844.
    5. Xing, B., Cao, C., Zhao, W., Shen, M., Wang, C., and Zhao, Z., Dense 8 mol% yttria-stabilized zirconia electrolyte by DLP stereolithography. Journal of the European Ceramic Society, 2020. 40, 1418-1423.
    6. Jiang, C.-P., Hsu, H.-J., and Lee, S.-Y., Development of mask-less projection slurry stereolithography for the fabrication of zirconia dental coping. International journal of precision engineering and manufacturing, 2014. 15, 2413-2419.
    7. He, R., Liu, W., Wu, Z., An, D., Huang, M., Wu, H., Jiang, Q., Ji, X., Wu, S., and Xie, Z., Fabrication of complex-shaped zirconia ceramic parts via a DLP-stereolithography-based 3D printing method. Ceramics International, 2018. 44, 3412-3416.
    8. Wang, L., Liu, X., Wang, G., Tang, W., Li, S., Duan, W., and Dou, R., Partially stabilized zirconia moulds fabricated by stereolithographic additive manufacturing via digital light processing. Materials Science and Engineering: A, 2020. 770, 138537.
    9. Chang, S.-L., Lo, C.-H., Jiang, C.-P., Lee, S.-Y., and Lin, Y.-M., Shrinkage predication of human tooth manufactured through 3D printing. International Journal of Life Sciences Biotechnology and Pharma Research, 2015. 4, 66-70.
    10. Technologies, A.C.F.o.A.M., Standard Terminology for Additive Manufacturing—General Principles and Terminology. ISO/ASTM52900‐15. 2009.
    11. 鄧力升,無溶劑氧化鋯樹脂漿料於光固化技術之研究,2016。國立臺北科技大學,台北市。
    12. Bae, C.-J., Ramachandran, A., Chung, K., and Park, S., Ceramic stereolithography: additive manufacturing for 3D complex ceramic structures. Journal of the Korean Ceramic Society, 2017. 54, 470-477.
    13. Truxova, V., Safka, J., Seidl, M., Kovalenko, I., Volesky, L., and Ackermann, M., Ceramic 3D printing: Comparison of SLA and DLP technologies. MM Sci. J, 2020. 2020, 3905-3911.
    14. Quan, H., Zhang, T., Xu, H., Luo, S., Nie, J., and Zhu, X., Photo-curing 3D printing technique and its challenges. Bioactive materials, 2020. 5, 110-115.
    15. Kunwong, D., Sumanochitraporn, N., and Kaewpirom, S., Curing behavior of a UV-curable coating based on urethane acrylate oligomer: The influence of reactive monomers. Songklanakarin Journal of Science and Technology, 2011. 33.
    16. Revilla-León, M., Meyer, M.J., Zandinejad, A., and Özcan, M., Additive manufacturing technologies for processing zirconia in dental applications. Int J Comput Dent, 2020. 23, 27-37.
    17. Dave, H.K., Karumuri, R.T., Prajapati, A.R., and Rajpurohit, S.R., Specific energy absorption during compression testing of ABS and FPU parts fabricated using LCD-SLA based 3D printer. Rapid Prototyping Journal, 2022.
    18. Wolten, G., Diffusionless phase transformations in zirconia and hafnia. Journal of the American Ceramic Society, 1963. 46, 418-422.
    19. Saridag, S., Tak, O., and Alniacik, G., Basic properties and types of zirconia: An overview. World Journal of Stomatology, 2013. 2, 40-47.
    20. Sato, T. and Shimada, M., Transformation of ceria-doped tetragonal zirconia polycrystals by annealing in water. 1985.
    21. 賀毅强,現代粉末冶金金屬-陶瓷複合材料,2011。哈爾濱工業大學出版社。
    22. 水谷惟恭,山口喬,工業陶瓷製程,1986。復漢。
    23. Branco, A.C., Colaço, R., Figueiredo-Pina, C.G., and Serro, A.P., Recent Advances on 3D-Printed Zirconia-Based Dental Materials: A Review. Materials, 2023. 16, 1860.
    24. Zhao, Y., Li, P., Dong, P., Zeng, Y., and Chen, J., Investigation on 3D printing ZrO2 implant abutment and its fatigue performance simulation. Ceramics International, 2021. 47, 1053-1062 DOI: 10.1016/j.ceramint.2020.08.221.
    25. Osman, R.B., van der Veen, A.J., Huiberts, D., Wismeijer, D., and Alharbi, N., 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs. Journal of the mechanical behavior of biomedical materials, 2017. 75, 521-528.
    26. Zocca, A., Colombo, P., Gomes, C.M., and Günster, J., Additive manufacturing of ceramics: issues, potentialities, and opportunities. Journal of the American Ceramic Society, 2015. 98, 1983-2001.
    27. Foudzi, F.M., Muhamad, N., Sulong, A.B., and Zakaria, H., Yttria stabilized zirconia formed by micro ceramic injection molding: Rheological properties and debinding effects on the sintered part. Ceramics International, 2013. 39, 2665-2674.
    28. Wang, K., Qiu, M., Jiao, C., Gu, J., Xie, D., Wang, C., Tang, X., Wei, Z., and Shen, L., Study on defect-free debinding green body of ceramic formed by DLP technology. Ceramics International, 2020. 46, 2438-2446.
    29. Zhou, M., Liu, W., Wu, H., Song, X., Chen, Y., Cheng, L., He, F., Chen, S., and Wu, S., Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography–Optimization of the drying and debinding processes. Ceramics international, 2016. 42, 11598-11602.
    30. Pfaffinger, M., Mitteramskogler, G., Gmeiner, R., and Stampfl, J., Thermal Debinding of Ceramic-Filled Photopolymers, MSF. 825–826 (2015) 75–81.
    31. Stawarczyk, B., Özcan, M., Hallmann, L., Ender, A., Mehl, A., and Hämmerlet, C.H., The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clinical oral investigations, 2013. 17, 269-274.
    32. Chevalier, J., Olagnon, C., and Fantozzi, G., Subcritical crack propagation in 3Y‐TZP ceramics: static and cyclic fatigue. Journal of the American Ceramic Society, 1999. 82, 3129-3138.
    33. Ersoy, N.M., Aydoğdu, H.M., Değirmenci, B.Ü., Çökük, N., and Sevimay, M., The effects of sintering temperature and duration on the flexural strength and grain size of zirconia. Acta Biomaterialia Odontologica Scandinavica, 2015. 1, 43-50.
    34. Ebeid, K., Wille, S., Hamdy, A., Salah, T., El-Etreby, A., and Kern, M., Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater, 2014. 30, e419-24 DOI: 10.1016/j.dental.2014.09.003.
    35. Ahmed, W.M., Troczynski, T., McCullagh, A.P., Wyatt, C.C., and Carvalho, R.M., The influence of altering sintering protocols on the optical and mechanical properties of zirconia: a review. Journal of Esthetic and Restorative Dentistry, 2019. 31, 423-430.
    36. Testing, A.S.f. and Materials,Standard test method for Vickers indentation hardness of advanced ceramics,2015。ASTM International。
    37. Li, H., Liu, Y., Li, W., Liu, Y., and Zeng, Q., Effect of zirconia content and particle size on the properties of 3D‐printed alumina‐based ceramic cores. Journal of the American Ceramic Society, 2021. 104, 6015-6028.

    無法下載圖示
    全文公開日期 2028/08/25 (校外網路)
    全文公開日期 2028/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE