簡易檢索 / 詳目顯示

研究生: 陳泊江
Bo-Jaing Chen
論文名稱: 積層製造用於微流體系統之應用
Microfluidic system using on the application of Additive manufacturing technology research
指導教授: 謝志華
Chih-Hua Hsieh
口試委員: 謝志華
Chih-Hua Hsieh
鄭正元
Jeng, Jeng-Ywan
林上智
Shang-Chih Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 79
中文關鍵詞: 積層製造奈米藥物載體微流道系統藥物傳輸系統光固化3D列印技術
外文關鍵詞: nanoparticle drug delivery system
相關次數: 點閱:269下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藥物傳輸系統使用在因為疾病讓藥物無法產生預定功效,使患者利於吸收藥物的一種技術,不論是口服、注射、貼片等,各樣的方式讓患者在合適的狀態之下可以吸收適量的劑量。然而在這樣的方式下對癌細胞的藥物治療卻面臨了挑戰,就化療的藥物來說,無論是注射或口服的投放方式皆會因為藥物不易穿透腫瘤,以及人體免疫系統將藥物識別為外來的入侵物而進行分解。
    由於許多傳統藥劑都屬於傾瀉系統,使用後造成人體血液中的藥物濃度過高,導致藥物副作用。為此透過奈米藥物載體的方式改善人體對於藥物的接收量與釋出藥物的時間,並可保護藥物在人體內部在適當的時機與位置發揮出適量的作用。
    奈米藥物載體具有治療優勢與極高的成效,但製程難度與技術門檻高,導致製作成本過高。本研究希望透過積層製造技術結合微流道系統,製作一個可產生奈米藥物載體的微實驗晶片,除了方便攜帶與製作程序簡單化外,也可降低技術成本,不須繁複的實驗室設備,亦可用於落後地區,提升區域醫療品質。


    The drug delivery system is used in a technology that prevents the drug from producing a predetermined effect due to disease and makes it easier for the patient to absorb the drug. Whether it is oral, injection, patch, etc., various methods allow the patient to absorb the appropriate dose under the appropriate state. However, in this way, the drug treatment of cancer cells is facing challenges. For chemotherapy drugs, whether it is injected or orally administered, the drugs cannot easily penetrate the tumor and the human immune system recognizes the drugs as foreign. The invaders are decomposed.
    Since many traditional medicines belong to the dumping system, after use, the concentration of the medicine in the human blood is too high, leading to side effects of the medicine. To this end, the nano-drug carrier is used to improve the body's acceptance of the drug and the time it takes to release the drug and can protect the drug to play an appropriate role at the appropriate time and position inside the human body.
    Nano-drug carriers have therapeutic advantages and extremely high results, but the difficulty of the manufacturing process and the high technical threshold result in high production costs. This research hopes to use multi-layer manufacturing technology combined with a microfluidic system to produce a micro-experimental wafer that can produce nano-drug carriers. In addition to being convenient to carry and simplifying the production process, it can also reduce technical costs and eliminate the need for complicated laboratory equipment. It can also be used in backward areas to improve the quality of regional medical care.

    摘要 I ABSTRACT II 誌謝 III 圖表目錄 VI 1、 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 論文架構 3 2、 文獻回顧 5 2.1 積層製造技術 5 2.2 微流體晶片文獻回顧 8 2.2.1 傳統製作微流道流程 9 2.2.2 積層製造如何製作微流道系統 10 2.2.3 積層製造技術列印微流體系統的應用 14 3、 應用積層製造技術製作微流道的可行性研究 16 3.1 以光固化積層製造技術製作微流道的可行性分析 16 3.2 積層製造技術列印微流道的測試 19 3.2.1 面板式光固化成型積層製造設備 19 3.2.2 紫外光雷射應用於光固化樹脂的積層製造列印 20 3.2.3 應用紫外光雷射搭配彈性光固化樹脂槽的積層製造設備列印測試 22 3.2.4 多噴嘴式材料噴塗積層製造設備 23 3.3 光固化可行性測試結論 30 4、 應用積層製造技術製作奈米藥物載體晶片的可行性研究 32 4.1 奈米藥物載體 33 4.2 實驗機台與驗證程序 37 4.3 應用積層製造製作奈米藥物載體晶片之可行性分析 41 4.3.1 應用紫外光雷射搭配彈性光固化樹脂槽的積層製造製作微流道晶片可行性測試 43 4.3.2 多噴頭式材料噴塗積層製造設備製作微流道晶片可行性測試 46 4.4 積層製造技術製作奈米藥物載體晶片的設計與開發 49 4.4.1 微結構設計 49 4.4.2 微流道載體合成實驗 57 5、 結論及未來展望 65 6、 參考資料 66

    [1] Ian Gibson, David Rosen, Brent Stucker. Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing Second Edition. (2010)
    [2] 微流體晶片的應用─細胞機械特性的量測 科學發展 566 期 (2020)
    [3] Keane, Martin Loaches. Critical Care Host-pathogen interaction during mechanical ventilation: systemic or compartmentalized response? (2019)
    [4] 國家實驗研究院-科普講堂生物晶片的奧妙
    [5] 郭旭程. 利用粗糙化PDMS結構與PPy導電薄膜製成高拉伸導電性微流道之研究. (2017)
    [6] Sidra Waheed, Joan M. Cabot, Niall P. Macdonald, Trevor Lewis, Rosanne M. Guijt, Brett Paull, Michael C. Breadmore. 3D printed microfluidic devices: enablers and barriers. (2016)
    [7] Jia Zhang, Wenhua Xu, Fengying Xu, Wangwang Lu, Liuyun Hu, Jianlin Zhou, Chen Zhang, Zhuo Jiang. Microfluidic droplet formation in co-flow devices fabricated by micro 3D printing. (2020).
    [8] 黃念祖. What's fun in EE臺大電機系科普系列 應用於血液檢測之生醫微流道晶片(2013)
    [9] 3D列印在微流控晶片加工中的應用-微流控之家-每日頭條 (2018)
    [10] 洪伯達, 胡接燊, 葉明功. 藥學電子報-奈米藥品在臨床上的運用 (2012)
    [11] Jeffrey B Ulmer, Monique K Mansoura, Andrew J Geall. Ulmer et al. Vaccines on demand: Science fiction or future reality. Expert Opin Drug Disco, 10(2) (2015)
    [12] 黃堯焜. 溶媒添加對擠壓成形法製備微脂體包覆藥物之影響與評估
    [13] Thidarat Wongpinyochit, John D. Totten, Blair F. Johnston, F. Philipp Seib Microfluidic-assisted silk nanoparticle tuning (2019)
    [14] Stroock, A. D, Dertinger, S. K., Ajdari, A., Mezic, I., Stone, H. A., & Whitesides, G. M. Chaotic mixer for microchannels. Science (New York, N.Y.), 295(5555), 647–651. (2002)
    [15] Elisabeth Kastner, Randip Kaur, Deborah Lowry, Behfar Moghaddam, Alexander Wilkinson, Yvonne Perrie, Medicines Research Unit, School of Life and Health Sciences, Aston University, Birmingham B4 7ET, U High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization (2014)
    [16] Jan Kotouček, František Hubatka, Josef Mašek, Pavel Kulich, Kamila Velínská, Jaroslava Bezděková, Martina Fojtíková, Eliška Bartheldyová, Andrea Tomečková, Jana Stráská, Dominik Hrebík, Stuart Macaulay, Irena Kratochvílová, Milan Raška, Jaroslav Turánek. Preparation of nanoliposomes by microfuidic mixing in herring-bone channel and the role of membrane fuidity in liposomes formation (2020)
    [17] 胡哲銘. 新冠肺炎疫苗研發大直擊!假扮冠狀病毒的奈米疫苗 (2020)
    [18] 林漢偉, 李旺龍. 降低阻力的神奇皮膚_鯊魚,仿生部落格 (2016)
    [19] 鱗片保護皮膚---軟骨魚綱仿生部落格 (2016)
    [20] A. Boomsma, F. Sotiropoulos. Direct numerical simulation of sharkskin denticles in turbulent channel flow Physics of Fluids (2016)
    [21] Sungwon Jo, Seongbin Ahn, Heungsoo Lee, Chul-MinJung, Simon Song, DongRipKim. Water-repellent Hybrid Nanowire and Micro-scale Denticle Structures on Flexible Substrates of Effective Air Retention (2018)
    [22] Sajad Razavi Bazaz, Omid Rouhi, Mohammad Amin Raouf, Fatemeh Ejeian, Mohsen Asadnia, Dayong Jin, Majid Ebrahimi Warkiani. 3D Printing of Inertial Microfluidic Devices (2020)
    [23] Jonathan Ford, Todd Goldstein, Sean Trahan, Allison Neuwirth, Kyle Tatoris Summer Decker. A 3D-printed nasopharyngeal swab for COVID-19 diagnostic testing (2020)
    [24] Mark A. Skylar-Scott, Jochen Mueller, Claas W. Visser, Jennifer A. Lewis.
    Voxelated soft matter via multi-material multi-nozzle 3D printing (2019)
    [25] A. Sydney Gladman, Elisabetta A. Matsumoto, Ralph G. Nuzzo, L. Mahadevan, Jennifer A. Lewis. Biomimetic 4D printing (2016)
    [26] Ashley L. Beckwith, Jeffrey T. Borenstein, Luis Fernando Velásquez-García , Senior Member, IEEE Monolithic. 3D-Printed Microfluidic Platform for Recapitulation of Dynamic Tumor Microenvironments (2018)
    [27] Jia Ming Zhang, Qinglei Ji, Huiling Duan. Three-Dimensional Printed Devices in Droplet Microfluidics (2019)
    [28] Quoc Lam, Dhiraj Patil, Thao Le, Trevor Eppley, Ziyad Salti, Derek Goss, Alex Grishin, Dhruv Bhate. An Examination of the Low Strain Rate Sensitivity of Additively Manufactured Polymer, Composite and Metallic Honeycomb Structures (2019)
    [29] Sean Keane1, Ignacio Martin-Loeches. Host-pathogen interaction during mechanical ventilation: systemic or compartmentalized response? (2019)
    [30] Yihao Chen, Siyuan Lu, Shasha Zhang, Yan Li, Zhe Qu, Ying Chen, Bingwei Lu, Xinyan Wang, Xue Feng. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring (2017)
    [31] Thomas J. Hinton, Quentin Jallerat, Rachelle N. Palchesko, Joon Hyung Park, Martin S. Grodzicki, Hao-Jan Shue, Mohamed H. Ramadan, Andrew R. Hudson, Adam W. Feinberg. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels (2015)
    [32] Michael Wehner, Ryan L. Truby, Daniel J. Fitzgerald, Bobak Mosadegh, George M. Whitesides, Jennifer A. Lewis, Robert J. Wood. An integrated design and fabrication strategy for entirely soft, autonomous robots (2016)
    [33] Kevin J. McHugh, Thanh D. Nguyen, Allison R. Linehan, David Yang, Adam M. Behrens, Sviatlana Rose, Zachary L. Tochka, Stephany Y. Tzeng, James J. Norman, Aaron C. Anselmo, Xian Xu, Stephanie Tomasic, Matthew A. Taylor, Jennifer Lu, Rohiverth Guarecuco, Robert Langer, Ana Jaklenec. Fabrication of fillable microparticles and other complex 3D microstructures (2017)
    [34] Florian Krammer, Viviana Simon. Serology assays to manage COVID-19 (2020)
    [35] Frederik Mayer, Stefan Richter, Johann Westhauser, Eva Blasco, Christopher Barner-Kowollik, Martin Wegener. Multimaterial 3D laser microprinting using an integrated microfluidic system (2019)

    QR CODE