簡易檢索 / 詳目顯示

研究生: 呂威星
Wei-Xing Lu
論文名稱: 利用微機電製程製作含金屬奈米管陣列之遠紅外線熱輻射元件
Fabrication of Far Infrared Thermal Emitters with Metallic Nanotube Arrays by MEMS Processes
指導教授: 李三良
San-Liang Lee
口試委員: 李三良
San-Liang Lee
朱瑾
Jinn-P Chu
何文章
Wen-Jeng Ho
洪勇智
Yung-Jr Hung
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 87
中文關鍵詞: 遠紅外線金屬加熱層微機電製程週期性結構濾波層奈米管陣列
外文關鍵詞: far infrared, metal heater, MEMS process, periodic structure, filter layer, MeNTA
相關次數: 點閱:232下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文製作波長位於8-14 μm之遠紅外線發光元件,希望將此元件應用於生醫領域,例如促進血液循環、有助於消炎抑菌、有助於護膚美容等,以簡單、低成本的方式製作一個高效率之光源為本論文首要目標。
    本論文改良先前製作之遠紅外線熱輻射發光元件,使熱輻射效率與熱輻射功率大幅上升。為了達到製程穩定性、低成本及大量製造的目標,本次元件皆使用自行設計的微機電製程製作發光元件,委託台灣半導體研究中心(TSRI)製作,最後與本校材料系朱瑾老師之學生合作在晶片表面製作不同週期的金屬奈米管陣列,以探討其對輸出功率、發光光譜與發光效率之影響。
    本次重新設計加熱層材料,選用更高發射率的材料作為發射層,以達到高熱輻射效率與熱輻射功率。將加熱層位置往晶片表面移動,使其表面溫度升高,熱輻射功率與溫度成四次方正比,達到高熱輻射功率。本次元件也使用簍空玻璃基板,將PCB基板底下挖空,在晶片與基板中間墊一片150 µm的玻璃,以空氣隔絕熱能,防止熱能往基板散失。
    本次元件經量測後,熱輻射效率與熱輻射功率皆較市售元件高,元件在7.6-V的偏壓下最高可達到7.45×10-3的發光效率,功率密度為0.681 mW/mm2,並實現發光頻譜波位於8至14 µm的波長。


    In this thesis, a far-infrared light-emitting device in the wavelength range of 8-14 µm is fabricated for biomedical applications, such as promoting blood circulation, reducing inflammation and bacteriostasis, and skin care. The primary goal of this thesis is to realize a high-efficiency light source with simple fabrication and low cost.
    The far-infrared thermal radiation light-emitting devices developed before are renovated to greatly increase the thermal radiation efficiency and thermal radiation power. In order to achieve the goal of process stability, low cost, and mass production, the light-emitting devices were fabricated using self-designed MEMS processes that were conducted in Taiwan Semiconductor Research Center (TSRI). Different periods of metal nanotube arrays are fabricated on the surface of the wafer for investigating their effects on the emitted power, spectrum, and efficiency.
    The material of the heating layer is redesigned to use the material with higher emissivity as the emission layer to achieve high thermal radiation efficiency and thermal radiation power. The heating layer is moved close to the surface of the wafer to increase the surface temperature and the thermal radiation power. The fabricated device was attached onto a glass substrate on a hollow PCB substrate. A piece of 150 µm glass is placed between the wafer and the substrate to prevent heat dissipation to the substrate.
    The measurement of the device performance indicates that the thermal radiation efficiency and thermal radiation power are higher than those of the commercially available devices. The device can reach a maximum conversion efficiency of 7.45×10-3 under a 7.6-V bias voltage, and the power density can reach 0.681 mW/mm2. The emission spectrum covers the wavelength range from 8 to 14 µm.

    目錄 摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VII 表目錄 XI 第 1 章 研究動機 1 1.1前言 1 1.2研究動機 1 1.3紅外光在醫學上的運用 2 1.4研究方向 3 1.5論文架構 3 第 2 章 基本原理與技術 4 2.1黑體輻射簡介 4 2.2不同材料之光譜發射率 6 2.3熱傳遞與發光效率 9 2.4金屬奈米管陣列濾波器 11 第 3 章 以微機電製程實現FIR元件 14 3.1 前次製程設計與量測結果 14 3.2 元件結構設計 16 3.3 製程流程 19 3.4 金屬奈米管陣列濾波器製程結果 24 第 4 章 元件封裝與特性量測 29 4.1 遠紅外光頻譜量測 29 4.1.1不鏽鋼金屬奈米管陣列濾波器之濾波效果 31 4.1.2銅金屬奈米管陣列濾波器之濾波效果 32 4.2 發光功率量測 32 4.2.1 有無不鏽鋼金屬奈米管陣列濾波器對元件之影響 34 4.2.2 有無銅金屬奈米管陣列濾波器對元件之影響 43 4.2.3 比較不同金屬奈米管陣列濾波器之元件 51 4.3 溫度分布量測 59 4.4 IR元件比較 63 4.5 晶片封裝 64 第 5 章 結論 66 5.1 成果與討論 66 5.2 未來研究方向 68 參考文獻 69

    [1] D. L. Woolard, R. Brown, M. Pepper, and M. Kemp, "Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications?," Proceedings of the IEEE, vol. 93, no. 10, pp. 1722-1743, 2005.
    [2] H. San, C. Li, X. Chen, R. Chen, and Q. Zhang, "Silicon-Based Micro-Machined Infrared Emitters With a Micro-Bridge and a Self-Heating Membrane Structure," IEEE Photonics Technology Letters, vol. 25, no. 11, pp. 1014-1016, 2013.
    [3] 詹博鈞, "利用標準CMOS製程製作十字網格濾波紅外線熱輻射發光元件," 碩士, 電子工程系, 國立臺灣科技大學, 台北市, 2019.
    [4] Y. Hamada et al., "Effects of far infrared ray on Hela cells and WI-38 cells," in International Congress Series, vol. 1255: Elsevier, pp. 339-341, 2003.
    [5] J. S. Dover, T. J. Phillips, and K. A. Arndt, "Cutaneous effects and therapeutic uses of heat with emphasis on infrared radiation," Journal of the American Academy of Dermatology, vol. 20, no. 2, pp. 278-286, 1989.
    [6] 鄧海平, 沈雪勇, and 丁光宏, "針灸與經絡穴位红外幅射特性," 中國針灸, vol. 24, no. 2, pp. 105-107, 2004.
    [7] H. Toyokawa et al., "Promotive effects of far-infrared ray on full-thickness skin wound healing in rats," Experimental Biology and Medicine, vol. 228, no. 6, pp. 724-729, 2003.
    [8] W. J. Yoo et al., "Development of a 2-channel embedded infrared fiber-optic temperature sensor using silver halide optical fibers," Sensors, vol. 11, no. 10, pp. 9549-9559, 2011.
    [9] 邱伯權, "提升遠紅外線熱輻射元件效率的方法," 碩士, 電子工程系, 國立臺灣科技大學, 台北市, 2020.
    [10] J. Bartl and M. Baranek, "Emissivity of aluminium and its importance for radiometric measurement," Measurement Science Review, vol. 4, no. 3, pp. 31-36, 2004.
    [11] N. Ravindra et al., "Emissivity measurements and modeling of silicon-related materials: an overview," International journal of thermophysics, vol. 22, no. 5, pp. 1593-1611, 2001.
    [12] C. J. Glassbrenner and G. A. Slack, "Thermal conductivity of silicon and germanium from 3 K to the melting point," Physical Review, vol. 134, no. 4A, p. A1058, 1964.
    [13] W.-T. Chen, K. Manivannan, C.-C. Yu, J. P. Chu, and J.-K. Chen, "Fabrication of an artificial nanosucker device with a large area nanotube array of metallic glass," Nanoscale, vol. 10, no. 3, pp. 1366-1375, 2018.
    [14] I. photonics. Broadband Pulsed Infrared Light Sources.
    [15] J. P. Chu, K.-W. Tseng and C.-Y. Liu, “Large-area alloy nanotube arrays with highly-ordered periodicity: fabrication and characterization,” Materials & Design, vol. 209, pp. 109998, 2021
    [16] J.-K. Chen, W.-T. Chen, C.-C. Cheng, C.-C. Yu and J. P. Chu, “Metallic glass nanotube arrays: Preparation and surface characterizations,” Materials Today, vol. 21 no. 2, pp. 178-185, 2018
    [17] K. Möller, J. Warren, J. Heaney and C. Kotecki, “Cross-shaped bandpass filters for the near-and mid-infrared wavelength regions,” Applied Optics, vol. 35, no. 31, pp. 6210-6215, 1996
    [18] T. Ott, M. Schossig, V. Norkus and G. Gerlach, “Efficient thermal infrared emitter with high radiant power,” Journal of Sensors and Sensor Systems, vol. 4, no. 2, pp. 313-319, 2015
    [19] V. Y. Soboleva, D. Gomon, E. Sedykh, V. Balya and M. Khodzitskiĭ, “Development of narrow bandpass filters based on cross cavities for the terahertz frequency range,” Journal of Optical Technology, vol. 84, no. 8, pp. 521-524, 2017
    [20] W.-T. Chen, K. Manivannan, C.-C. Yu, J. P. Chu and J.-K. Chen, “Fabrication of an artificial nanosucker device with a large area nanotube array of metallic glass,” Nanoscale, vol. 10, no. 3, pp. 1366-1375, 2018
    [21] 賴世豪, "利用標準CMOS製程製作螺線型微型金屬加熱絲之紅外光熱輻射發光元件," 碩士, 電子工程系, 國立臺灣科技大學, 台北市, 2018.
    [22] M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, et al, “Photonic crystal enhanced narrow-band infrared emitters,” Applied Physics Letters, vol. 81, no. 25, pp. 4685-4687, 2002
    [23] I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, et al, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” Journal of Applied Physics, vol. 98, no. 1, pp. 013531, 2005
    [24] C.-H. Cheng, Y.-C. Chen, P.-W. Wu, H.-H. Chen and S.-C. Lee, “Improved performance of plasmonic thermal emitter via incorporation of gold nanoparticles,” IEEE Photonics Technology Letters, vol. 25, no. 17, pp. 1727-1730, 2013
    [26] Y. B. Shin, W. Y. Kim and H. C. Lee, “Anodic Aluminum Oxide-Based IR Emitter for High-Speed Infrared Scene Projector,” Journal of Microelectromechanical Systems, vol. 28, no. 6, pp. 1032-1038, 2019
    [27] M. Yuste, R. E. Galindo, S. Carvalho, J. Albella and O. Sánchez, “Improving the visible transmittance of low-e titanium nitride based coatings for solar thermal applications,” Applied Surface Science, vol. 258, no. 5, pp. 1784-1788, 2011
    [28] N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Transactions on semiconductor manufacturing, vol. 11, no. 1, pp. 30-39, 1998
    [29] S. Chase and R. Joseph, “Resonant array bandpass filters for the far infrared,” Applied Optics, vol. 22, no. 11, pp. 1775-1779, 1983
    [30] J. Pendry, L. Martin-Moreno and F. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science, vol. 305, no. 5685, pp. 847-848, 2004
    [31] W. J. Hwang, K. S. Shin, J. H. Roh, D. S. Lee, and S. H. Choa, “Development of Micro-Heaters with Optimized Temperature Compensation Design for Gas Sensors,” Sensors, vol. 11(3), pp. 2580-2591, 2011.
    [32] J. L. Miller, “Principles of Infrared Technology: A Practical Guide to the State of the Art,” Van Nostrand Reinhold, 1994.
    [33] J. R. Howell, R. Siegel, and M. P. Menguc, “Thermal Radiation Heat Transfer”, CRC press, 2010.

    無法下載圖示 全文公開日期 2025/08/15 (校內網路)
    全文公開日期 2027/08/15 (校外網路)
    全文公開日期 2027/08/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE