簡易檢索 / 詳目顯示

研究生: 黃繼瑩
Ji-ying Huang
論文名稱: 設計與實現雙向高速傳輸的分波多工被動光網路
Design and Realization of High Speed Bidirectional Transmission in WDM-PON Systems
指導教授: 李三良
San-liang Lee
口試委員: 吳靜雄
Jing-shown Wu
譚昌文
Chang-wen Tarn
楊淳良
Chun-liang Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 83
中文關鍵詞: 分波多工被動光網路雙波長雷射反射式電吸收調變器
外文關鍵詞: WDM, PON, REAM, DWDFB
相關次數: 點閱:360下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著高畫質的隨選視訊服務(MOD)的問市,以及一般使用者對網路使用日益嚴重的依賴性來說,檢視目前普遍以xDSL為主體的最後一哩網路架構,皆無法滿足未來網路服務的頻寬需求?傳統電纜線的傳輸,速率往往取決於分享到的頻寬以及距離等之類的因素,若是要對每個用戶提供專線服務,以建置與設備的費用來看應該是不可能實現的方案。
    被動光學網路的發展得到了網路營運商的青睞,現在已開始使用GPON的技術應用於實際光纖到家的系統中,並且10 Gbps EPON的規範也將於今年年底拍板定案,因此視為下階段網路架構趨勢的分波多工被動光學網路(WDM-PON)勢必要朝向雙向傳輸10 Gbps資料速率的方向邁進,才得以應付如此大量的頻寬需求。WDM-PON發展至今,較令眾人所矚目的重要技術,便是所謂的無色光源的特性,即系統架構中只由局端提供用戶端所需之光源作為上行之媒介,而在用戶端的部分,僅需具備能調變訊號之調變器即可。
    本論文主要提出一新型交叉複調變(Cross-remodulation)的10 Gbps雙向高速傳輸WDM-PON網路架構之設計,加上使用了本實驗室已發展出的應用於氣體偵測用的雙波長DFB雷射作為頭端機房的主要光源,整體網路架構的特點包含: 1)大幅地解決WDM-PON系統最大問題—雷利散射,2)簡化了傳統架構上所需的額外提供給上行訊號用的光源數目,3)對於用戶端的10 Gbps ONU可能採用的元件,從量測頻率響應特性進行完整的評估,我們採用了特殊反射式設計的電致吸收調變器(REAM)作為ONU的調變器,4)配合雙波長DFB雷射輸出的兩個波段之波長,分別為S波段與L波段,可以將上下行傳輸訊號分別載於不同波段的光源上。經由實驗的成功驗證,上下行可以同時傳輸10 Gbps PRBS NRZ訊號,於經過25公里的單模光纖後,大約只增加1 ~ 1.5 dB光功率償付值(Power penalty)。
    由於REAM元件本身具有高插入損耗特性,而上行傳輸訊號之光源必須經過整個傳輸線路來回兩次,光功率額度範圍(Power budget)是必須考慮的參數,因此也從模擬軟體VPI方面著手,探討將REAM結合SOA基體化的最佳參數設計與效能驗證。


    The evolution of the passive optical networks attracts much attraction from the network providers. It begins with applying the GPON technology into the actual fiber-to-the-home solutions. Besides, the 10 Gbps EPON standards will be released this year. The next generation network technology after the TDM-PON is the WDM-PON. The network architecture must be able to provide 10 Gbps signal transmission for each node. The critical requirement in the WDM-PON systems is the colorless optical network unit (ONU) design. All multi-wavelength lightwave sources, including those for downstream and upstream transmission, must be placed at the optical line terminal (OLT) of the central office. In the ONU, a simple light source or modulator is used to transmit the upstream signal.
    In this thesis, a novel WDM-PON network architecture is proposed for providing the 10 Gbps bidirectional transmission with a cross-remodulation skill. A special dual-wavelength DFB (DWDFB) laser provides the two wavelengths in different spectral bands for simultaneous transmission of downstream and upstream signals. This DWDFB laser was originally designed by our lab and for gas sensing applications. The advantages of this network architecture include: 1) the reduction of Raleigth backscattering of the WDM-PON system, 2) the use of half number of light sources. We also upgrade the upstream data rate to 10 Gbps and provide symmetric transmission. After measuring the small frequency response of various device candidates for 10 Gbps ONU, we choose to use a reflective electroabsorption modulator (REAM) in each ONU of our system. The output wavelengths of DWDFB laser locate at the S-band and L-band, so the upstream and downstream signals are transmitted at the different wavelength bands. We demonstrated experimentally that the upstream and downstream transmission 10 Gbps NRZ signals over 25-km single-mode fiber (SMF) can have only 1 ~ 1.5 dB power penalty.

    中文摘要 I Abstract III List of Figures VII List of Tables X Chapter 1 - Introduction 1 1.1. Introduction of Passive Optical Network (PON) 1 1.2. Research Motivation 5 1.3. Thesis Architecture 6 Chapter 2 - Evolution of Passive Optical Network Techniques 7 2.1. PON Techniques 7 2.2.1. High Speed PON [21] 16 2.2.2. High Speed ONUs Design 18 Chapter 3 - Comparisons for 10 Gbps Commercial E/O Devices 25 3.1. Prior work for the frequency response measurement 25 3.2. Experiment 28 3.2.1. Introduction of vector network analyzer 28 3.2.2. Frequency response measurement system establishment 29 3.3. Results and Comparison 49 Chapter 4 – Cross-Remodulation Architecture for 10 Gbps Bidirectional Transmission 51 4.1. The Characteristic of REAM 51 4.1.1. Introduction of REAM 51 4.1.2. Application in Traditional WDM-PON Systems 53 4.2. Dual-Wavelength Distributed-Feedback Laser [41] 56 4.3. The realization of the Cross-Remodulation Architecture 60 4.3.1 New Design of Cross-Remodulation Structure 60 4.3.2. Experimental Setup 62 4.4. Power Budget Consideration 67 4.4.1. Loss calculation 67 4.4.2. Simulation for SOA integrated with REAM 68 Chapter 5 - Conclusion and Future Work 74 5.1. Conclusion 74 5.2. Future Work 75

    [1] C. Sauer, M. Gries, and S. Sonntag, “Modular Reference Implementation of an IP-DSLAM,” ISCC, pp. 191-198, Jun. 2005.
    [2] C. H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the Home Using a PON Infrastructure,” Journal of Lightwave Technology, vol. 24, no. 12, pp.4568-4583, Dec. 2006.
    [3] K. Cho, K. Fukuda, H. Esaki, and A. Kato, “The Impact and Implication of the Growth in Residential User-to-user Traffic,” ACM/SIGCOMM (SIGCOMM2006), Pisa, Italy, Sec. 11–15, pp. 207–218, 2006.
    [4] J. George, “Applications Compelling Fiber to the Home,” The Prism FTTH, vol. 3, no. 2, pp. 75, Oct. 2006.
    [5] M. F. Huang, J. Yu, H. C. Chien, Chowdhury A., Chen J., S. Chi, and G. K. Chang, “A Simple WDM-PON Architecture to Simultaneously Provide Triple-play Services by Using One Single Modulator,” OFC/NFOEC, paper, OTuI4, 2008.
    [6] A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed Passive Optical Network (WDM-PON) Technologies for Broadband Access: a Review [Invited],” Journal of Optical Networking, Vol. 4, no. 11, pp. 737-758, 2005.
    [7] P. Chanclou, F. Payoux1, T. Soret, N. Genay, R. Brenot, F. Blache, M. Goix, J. Landreau, O. Legouezigou, and F. Mallécot, “Demonstration of RSOA-based Remote Modulation at 2.5 and 5 Gbit/s for WDM PON,” OFC/NFOEC, paper, OED1, 2007.
    [8] H. H. Lin, “WDM-PON Systems with Reduced Rayleigh Scattering and Backreflection Effect,” Master Thesis, National Taiwan University of Science and Technology, Taiwan, 2008.
    [9] G. J. Pendock, and D. D. Sampson, “Transmission Performance of High Bit Rate Spectrum-sliced WDM Systems,” Journal of Lightwave Technology, vol. 14, no. 10, pp. 2141-2148, Oct. 1996.
    [10] D. J. Shin, Y. C. Keh, J. W. Kwon, E. H. Lee, J. K. Lee, M. K. Park, J. W. Park, J. K. Kang, Y. K. Oh, S. W. Kim, I. K. Yun, H. C. Shin, D. Heo, J. S. Lee, H. S. Shin, H. S. Kim, S. B. Park, D. K. Jung, S. T. Hwang, Y. J. Oh, D. H. Jang, and C. S. Shim, “C/Sband WDM-PON Employing Colorless Bidirectional Transceivers and SOA-based Broadband Light Sources,” OFC/NFOEC, paper, PDP36, 2005.
    [11] H. D. Kim, S. G. Kang, and C. H. Lee, “A Low-cost WDM Source with an ASE Injected Fabry-Perot Semiconductor laser,” IEEE Photonics Technology Letters, vol. 12, no. 8, pp. 1067-1069, Aug. 2000.
    [12] L. Y. Chan, C. K. Chan, D. T. K Tong, E. Tong, and L. K. Chen “Upstream Traffic Transmitter Using Injection-locked Fabry-Perot Laser Diode as Modulator for WDM Access Networks,” Electronics Letters, vol. 38, no. 1, pp. 43-45, Jan. 2002.
    [13] L. Li, “Static and Dynamic Properties of Injection-locked Semiconductor Lasers,” Journal of Quantum Electronics, vol. 30, no. 8, pp. 1701-1708, Aug. 1994
    [14] S. Y. Kim, E. S. Son, S. B. Jun, and Y. C. Chung, “Effects of Downstream Modulation Formats on the Performance of Bidirectional WDM-PON Using RSOA,” OFC/NFOEC, paper, OWD3, 2007.
    [15] J. Prat, V. Polo, C. Bock, C. Arellano, and J. J. Vegas Olmos, “Full-Duplex Single Fiber Transmission Using FSK Downstream and IM Remote Upstream Modulations for Fiber-to-the-Home,” IEEE Photonics Technology Letters, vol. 17, no. 3, pp. 702-704, 2005.
    [16] A. Murakami, Y. J. Lee, K. Y. Cho, Y. Takushima, A. Agata, K. Tanaka, Y. Horiuchi, and Y. C. Chung, “Enhanced Reflection Tolerance of Upstream Signal in a RSOA-based WDM PON by Using Manchester Coding,” Proceeding of the SPIE, vol. 6783, pp. 678321-1~5, 2007.
    [17] W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G.. Jeong, and Y. W. Kim , “Bidirectional WDM-PON Based on Gain-saturated Reflective Semiconductor Optical Amplifiers,” Vol. 17, no. 11, pp. 2460-2462, IEEE Photonics Technology Letters, Nov. 2005.
    [18] S. C. Lin, S. L. Lee, and C. K. Liu, “Simple Approach for Bidirectional Performance Enhancement on WDM-PONs with Direct Modulation Lasers and RSOAs,” Optics Express, Vol. 16, no. 6, pp. 3636-3643, 2008.
    [19] F. Coppinger, L. Chen, and D. Piehler, “Nonlinear Raman Cross-Talk in a Video Overlay Passive Optical Networks,” OFC, paper, TuR5, 2003.
    [20] L. Chang, C. J. Chae, and Nirmalathas A., “Selective Delivery of DSB and SSB OFDM-based Video Signals over WDM-PON,” Microwave Photonics, pp.177-180, Oct. 2008.
    [21] G. Aloni, (Mar. 2009), 10G EPON Brings Advantages to the Fiber Access Network, PMC-Sierra, [Online] Available: http://www.pmc-sierra.com/whitepaper-processor-mips-sonet-ethernet/10g_epon/
    [22] H. C. Chien1, M. F. Huang, A. Chowdhury, J. Chen2, S. Chi, and G. K. Chang, “A Novel Hybrid 10G/1G Coexisted TDM-PON Using Central Office Controlled Reflective Transmitters for Low-Cost Upstream 10G Services,” IEEE LEOS, paper, pp. 874-875, Oct. 2007.
    [23] C. H. Yeh, C. W. Chow, C. H. Wang, F. Y. Shih, Y. F. Wu, and Sien Chi, “Using Four Wavelength-multiplexed Self-seeding Fabry-Perot Lasers for 10 Gbps Upstream Traffic in TDM-PON,” Optics Express, vol. 16, no. 23, Nov. 2008.
    [24] K. Y. Cho, A. Agata, Y. Takushima, and Y. C. Chung, “FEC Optimization for 10-Gb/s WDM PON Implemented by using Bandwidth-limited RSOA,” OFC/NFOEC, paper, OMN5, 2009.
    [25] E. K. MacHale, G.. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G.. Moodie, and D. W. Smith, “Extended-reach PON Employing 10Gb/s Integrated Reflective EAM-SOA,” ECOC, paper, pp. 1-1, Sep. 2008.
    [26] E. Wong , X. Zhao, Connie J. Chang-Hasnain ,W. Hofmann, and M. C. Amann, “Uncooled, Optical Injection-Locked 1.55 mm VCSELs for Upstream Transmitters in WDM-PONs,” OFC/NFOEC, paper, PDP50, 2006.
    [27] X. Zhao, Connie J. Change-Hasnain1, W. Hofmann, and M. C. Amann, “Modulation Efficiency Enhancement of 1.55-μm Injection-Locked VCSELs,” Semiconductor Laser, paper, pp.125-126, 2006.
    [28] S. KAWANISHI, and M. SARUWATARI, “A Very Wide-Band Frequency Response Measurement System Using Optical heterodyne Detection” IEEE Transactions on Instrumentation and Measurement, vol. 38, No. 2, pp. 569-573, 1989.
    [29] A. Miao, Y. Huang, H. Huang, R. Wang, S. Wang, and X. Ren, “Wideband Calibration of Photodetector Frequency Response Based on Optical Heterodyne Measurement“ Microwave and Optical Technology Letters, vol. 51, no. 1, pp. 44-48, 2009.
    [30] E. Eichen, and A. Silletti, “Bandwidth Measurements of Ultrahigh Frequency Optical Detectors Using the Interferometric FM Sideband Technique,” IEEE Journal of Lightwave Technology, LT-5, pp. 1377–1381, 1987.
    [31] X. Zhao, E. K. Lau, D. Parekh, H. K. Sung, W. Hofmann, M. C. Amann, M. C. Wu, and Connie J. C. Hasnain, “107-GHz Resonance Frequency of 1.55-um VCSELs Under Ultra-high Optical Injection Locking,” CLEO/QELS, paper, 2008.
    [32] T. N. Chi, “Characterization of Four-port and Differential Circuits Using Two-port Vector Network Analyzer,” Master Thesis, National Central University, Taiwan, 2008.
    [33] Agilent technologies, [Online] http://www.home.agilent.com/
    [34] Anritsu, [Online] http://www.anritsu.com/About.asp
    [35] NTT electronics, [Online] http://www.nel-world.com/products/photonics/10Gcooled.html
    [36] CIphotonics, [Online] http://www.ciphotonics.com/cip_electroabsorption.htm
    [37] P. Bhattacharya, Semiconductor Optoelectronic Devices, International edition, Prentice Hall, 1994.
    [38] A. Chowdhury, H. C. Chien, M. F. Huang, Y. T. Hsueh, and G. K. Chang, “Rayleigh Backscattering Noise Eliminated Long-reach Bi-directional WDM-PON with 10-Gb/s DPSK Downstream and Remodulated 2.5-Gb/s OOK Upstream Using Optical Carrier-suppressed Sub-carrier Modulation,” IEEE LEOS, paper, pp. 673-674, 2008.
    [39] M. Feuer, M. Thomas, and L. Lunardi, “Backreflection and Loss in Single Fiber Loopback Networks,” IEEE Photonics Technology Letters, vol. 12, no. 8,pp. 1106–1108, Aug. 2000.
    [40] M. Fujiwara, J. Kani, H. Suzuki, and K. Iwatsuki, “Impact of Backreflection on Upstream Transmission in WDM Single-fiber Loopback Access Networks,’’ IEEE Journal of Lightwave Technology, vol.24, no. 2, pp.740-746, Feb. 2006.
    [41] C. L. Yao, Design and Fabrication Novel Fast Tunable Laser Sources, Doctorate Dissertation, National Taiwan University of Science and Technology, 2006.
    [42] H. H. Lin, C. Y. Lee, S. C. Lin, S. L. Lee, and G.. Keiser, “WDM-PON Systems Using Cross-Remodulation to Double Network Capacity with Reduced Rayleigh Scattering Effects,” OFC/NFOEC, paper, OTuH6, 2008.

    QR CODE