簡易檢索 / 詳目顯示

研究生: 李柏叡
Po-Jui Li
論文名稱: 水泥砂漿中鋼筋腐蝕快速試驗法之驗證研究
Verification Study of Rapid Testing Method of Reinforcement Corrosion in Cement Mortar
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 張大鵬
鄭安
王韡蒨
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 270
中文關鍵詞: 水泥砂漿鋼筋腐蝕快速試驗法氯離子開路電位線性極化阻抗脈衝電流重量損失法
外文關鍵詞: cement mortar, rapid test method, chloride, open circuit, linear polarization, impedance, impulse current, weight loss
相關次數: 點閱:311下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水泥砂漿常用於修補建築物和結構中的裂縫、損壞或破損。它可以填補空隙,修復結構的完整性,並提供額外的支撐。然而其成分多元,不僅有卜特蘭水泥亦含各類摻料及藥劑,如何影響鋼筋腐蝕行為值得探討。JC/T 986-2018為水泥基灌漿材料的試驗規範,其中所列的鋼筋腐蝕快速試驗法為評估其對鋼筋腐蝕的影響。然而,規範中使用低碳鋼棒作為電極而非竹節鋼筋,在實務上是否造成鋼筋腐蝕尚待釐清。本研究參照該規範中鋼筋腐蝕快速試驗法量測砂漿內鋼棒的電位變化,再使用開路電位、直流極化、交流阻抗和脈衝電流法量測計算實際砂漿內竹節鋼筋的腐蝕量,以驗證鋼筋腐蝕快速試驗法的適用性。
    根據試驗結果,鋼筋腐蝕快速試驗法對於砂漿中氯離子含量較為敏感,當新拌砂漿中氯離子含量超過0.15 kg/m3時,陽極極化電位值皆會明顯下降,代表鈍化膜受到破壞。比較腐蝕量時,氯離子含量低於0.15 kg/m3之砂漿試體鋼筋的腐蝕量較為接近(相差約1-5%),並隨著氯離子含量的提升,腐蝕量大為增加(增加約25%)。另外,水灰比從0.6降至0.4或細粒料比1:3降至1:2及以卜作嵐摻料取代部分水泥時,陽極極化電位值多數皆未明顯下降,均在600-800 mV之間,而腐蝕量也皆低於氯離子含量超過0.15 kg/m3砂漿。此外,快速試驗法相較於開路電位法精準,如水灰比從0.6降至0.4,養護齡期7天試體之開路電位法會從-117.161 mV降至-154.273 mV,代表容易腐蝕,不符合實際腐蝕情況;鋼筋腐蝕快速試驗法則從812.158 mV升至847.736 mV,代表不容易腐蝕,較符合實際腐蝕情況。
    快速試驗法的極化電位值高低,可簡要判斷水泥基灌漿材料對於鋼筋腐蝕的影響,如極化電位值越高,鈍化膜越穩定,相應腐蝕機率則越低;而極化電位值越低,鈍化膜越不穩定,相應腐蝕機率則越高。另外,若極化電位值轉為負值,代表材料中含有害因子(如氯離子),鈍化膜已被破壞,並造成鋼筋腐蝕。


    Cement mortar is commonly used to repair cracks, damages, or deteriorations in buildings and structures. It can fill voids, restore structural integrity, and provide additional support. However, its compositions are diverse, including not only the Portland cement but also various kinds of admixtures. Its impact on the steel reinforcement corrosion is worthy of investigation. JC/T 986-2018 is the testing specification for the cement-based grouting materials, and it includes a rapid corrosion test for the steel reinforcement to assess the effect of the cement-based grouting materials on the steel corrosion. However, the use of low-carbon steel round bars as electrodes rather than the deformed steel reinforcement, as specified, raises questions about actual impact of the cement-based grouting materials on the steel corrosion. This study follows the specified rapid corrosion test for the steel reinforcement in JC/T 986-2018 to measure the potential changes of steel reinforcements in mortar, then employs open circuit potential, direct current polarization, alternating current impedance, and impulse currents to measure and calculate the corrosion of the deformed steel reinforcement in mortar. This study aims to verify the applicability of the rapid corrosion test for steel reinforcement.
    According to the test results, the rapid corrosion test for the steel reinforcement was sensitive to the chloride ion content in mortar. When the chloride ion content in a freshly mixed mortar exceeded 0.15 kg/m³, the anodic polarization potential values all significantly decreased, indicating the breakdown of the passivation film. When comparing amounts of the corrosion, mortar specimens with chloride ion content below 0.15 kg/m³ exhibited steel reinforcement corrosion amounts that were relatively close (with a difference of about 1-5%), and as chloride ion content increased, the amount of corrosion increased significantly (by about 25%). Additionally, as the water-to-cement ratio was reduced from 0.6 to 0.4 or the fine aggregate ratio was decreased from 1:3 to 1:2, or when pozzolanic materials were used to replace some of the cement, most of the anodic polarization potential values did not show significant decreases and remained between 600-800 mV. The amount of corrosion were also below those seen in mortars with chloride ion content exceeding 0.15 kg/m³. Furthermore, compared to the open circuit potential measurement, the rapid corrosion test method was more accurate. For instance, when the water-to-cement ratio was reduced from 0.6 to 0.4, the open circuit potential for specimens with a curing age of 7 days shifted from -117.161 mV to -154.273 mV, indicating susceptibility to the corrosion and not matching actual corrosion conditions. Conversely, the rapid corrosion test method shifted from 812.158 mV to 847.736 mV, indicating less susceptibility to corrosion and aligning better with actual corrosion conditions.
    The polarization potential values obtained from the rapid corrosion test can be used to briefly judge the impact of the cement-based grouting materials on the steel reinforcement corrosion. Higher polarization potential values correspond to more stable passivation films, and consequently, a lower probability of corrosion. Conversely, lower polarization potential values correspond to less stable passivation films and a higher probability of corrosion. Additionally, if the polarization potential values shift to negative values, it signifies the presence of harmful factors (such as chloride ions), indicating the breakdown of the passivation film and resulting in steel reinforcement corrosion.

    摘要 I Abstract III 致謝 V 總目錄 VII 表目錄 XI 圖目錄 XIX 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究方法與流程 3 第二章 文獻回顧 5 2.1 腐蝕機理 5 2.1.1 腐蝕之定義 6 2.1.2 腐蝕之型態 7 2.1.3 電化學腐蝕 9 2.2 陽極極化反應 12 2.3 鋼筋混凝土用水泥基灌漿材料 13 2.3.1 性能與機理 14 2.3.2 種類與應用 15 2.4 鋼筋腐蝕之量測技術 17 2.4.1 重量損失法(Weight Loss Method) 17 2.4.2 開路電位法(Open Circuit Potential Method, OCP) 18 2.4.3 直流極化法(Linear Polarization Method, LPR) 19 2.4.4 交流阻抗法(Electrochemical Impedance Spectroscopy, EIS) 21 2.4.5 脈衝電流法(Electrochemical Galvanostatic Pulse Method, GPM) 23 2.4.6 鋼筋腐蝕快速試驗法 23 第三章 試驗計畫 39 3.1 試驗變數 39 3.1.1 變數說明 40 3.1.2 編碼說明 41 3.2 試驗材料 41 3.3 試驗配比 44 3.4 試驗設備 45 3.5 試體製作 48 3.6 試驗方法 50 3.6.1 鋼筋腐蝕快速試驗法 50 3.6.2 電化學量測試驗 52 3.6.3 鋼筋腐蝕量計算 54 3.6.4 X光繞射儀分析(XRD) 55 第四章 結果與討論 85 4.1 單根鋼筋試驗及Tafel曲線 85 4.2 水灰比影響 86 4.2.1 鋼筋腐蝕快速試驗法 87 4.2.2 硬固砂漿鋼筋腐蝕試驗 89 4.2.3 各試驗法之比較 92 4.3 細粒料比影響 92 4.3.1 鋼筋腐蝕快速試驗法 93 4.3.2 硬固砂漿鋼筋腐蝕試驗 95 4.3.3 各試驗法之比較 98 4.4 氯離子含量影響 98 4.4.1 鋼筋腐蝕快速試驗法 98 4.4.2 硬固砂漿鋼筋腐蝕試驗 101 4.4.3 各試驗法之比較 105 4.5 燃煤飛灰影響 106 4.5.1 鋼筋腐蝕快速試驗法 106 4.5.2 硬固砂漿鋼筋腐蝕試驗 108 4.5.3 各試驗法之比較 112 4.6 水淬高爐石粉影響 113 4.6.1 鋼筋腐蝕快速試驗法 113 4.6.2 硬固砂漿鋼筋腐蝕試驗 116 4.6.3 各試驗法之比較 120 4.7 特殊組別 121 4.7.1 鋼筋腐蝕快速試驗法 121 4.7.2 硬固砂漿鋼筋腐蝕試驗 124 4.8 X光繞射分析結果 126 4.9 各試驗法結果比較 127 第五章 結論與建議 225 5.1 結論 225 5.1.1 單根鋼筋及Tafel曲線 225 5.1.2 水灰比影響 225 5.1.3 細粒料比影響 226 5.1.4 氯離子含量影響 227 5.1.5 燃煤飛灰影響 228 5.1.6 水淬高爐石粉影響 229 5.1.7 特殊組別 229 5.2 建議 230 參考文獻 231

    [1] ACI 546R-14 (2014). Guide to Concrete Repair. American Concrete Institute. Farmington Hills, Michigan.
    [2] Agrawal, A. K. (2001). Corrosion Monitoring. Encyclopedia of Materials: Science and Technology. Buschow, K. H. J., Cahn, R. W. and Flemings, M. C. et al. Oxford, Elsevier: 1698-1701.
    [3] Ahmad, Z. (2006). Chapter 1 - Introduction to Corrosion. Principles of Corrosion Engineering and Corrosion Control. Ahmad, Z. Oxford, Butterworth-Heinemann: 1-8.
    [4] Ahmad, Z. (2006). Chapter 12 - Concrete Corrosion. Principles of Corrosion Engineering and Corrosion Control. Ahmad, Z. Oxford, Butterworth-Heinemann: 609-646.
    [5] Alexander, C. K. and Sadiku, M.N.O. (2006).Part 2 - AC Circuits. Fundamentals of Electric Circuits(Third Edition). Alexander, C. K. and Sadiku, M.N.O. New York, McGraw-Hill: 387-389.
    [6] ASTM A706/A706M-22a (2023). Standard Specification for Deformed and Plain Low-Alloy Steel Bars for Concrete Reinforcement. ASTM International, West Conshohocken, PA.
    [7] ASTM C109/C109M-21 (2021). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). ASTM International, West Conshohocken, PA.
    [8] ASTM C150/C150M-22 (2022). Standard Specification for Portland Cement. ASTM International, West Conshohocken, PA.
    [9] ASTM C305-20 (2020). Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International, West Conshohocken, PA.
    [10] ASTM C39/C39M-21 (2021). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA.
    [11] ASTM C778-21 (2021). Standard Specification for Standard Sand. ASTM International, West Conshohocken, PA.
    [12] ASTM C876-22b (2022). Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. ASTM International, West Conshohocken, PA.
    [13] ASTM C942/C942M-21 (2021). Standard Test Method for Compressive Strength of Grouts for Preplaced-Aggregate Concrete in the Laboratory. ASTM International, West Conshohocken, PA.
    [14] ASTM G1-03 (2012). Standard Practice for Preparing, Cleaning and Evaluating Corrosion Test Specimens. ASTM International, West Conshohocken, PA.
    [15] ASTM G3-14 (2019). Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing. ASTM International, West Conshohocken, PA.
    [16] Bardal, E. (2004). Passivity. Corrosion and Protection. Bardal, E. London, Springer London: 53-63.
    [17] Bradford, S. A. (2003). Corrosion. Encyclopedia of Physical Science and Technology (Third Edition). Meyers, R. A. New York, Academic Press: 761-778.
    [18] Broomfield, J. P. (2023). Chapter 3 - Causes and Mechanisms of Corrosion in Concrete. Corrosion of Steel in Concrete : Understanding, Investigation and Repair(Third Edition). Broomfield, J. P. London, UK, E & FN Spon: 17-31.
    [19] Buchanan, R. A. and Stansbury, E. E. (2012). Chapter 4 - Electrochemical Corrosion. Handbook of Environmental Degradation of Materials (Second Edition). Kutz, M. Oxford, William Andrew Publishing: 87-125.
    [20] CNS 12549 (2009),混凝土及水泥砂漿用水淬高爐爐碴粉,中華民國國家標準,經濟部標準檢驗局,台北市。
    [21] CNS 15560 (2015),鋼筋機械式續接試驗法,中華民國國家標準,經濟部標準檢驗局,台北市。
    [22] CNS 1957 (1976),化學試藥(氯酸鈉),中華民國國家標準,經濟部標準檢驗局,台北市。
    [23] CNS 3036 (2021),混凝土用燃煤飛灰及未煆燒或煆燒天然卜作嵐材料,中華民國國家標準,經濟部標準檢驗局,台北市。
    [24] CNS 3090 (2015),預拌混凝土,中華民國國家標準,經濟部標準檢驗局,台北市。
    [25] CNS 560 (2018),鋼筋混凝土用鋼筋,中華民國國家標準,經濟部標準檢驗局,台北市。
    [26] Coker, A. K. (2015). Chapter 22 - Metallurgy - Corrosion. Ludwig's Applied Process Design for Chemical and Petrochemical Plants (Fourth Edition). Coker, A. K. Boston, Gulf Professional Publishing: 1209-1241.
    [27] Feliu, V., González, J. A., Andrade, C. and Feliu, S. (1998). Equivalent Circuit for Modelling the Steel-Concrete Interface. I. Experimental Evidence and Theoretical Predictions. Corrosion Science 40(6): 975-993.
    [28] Fontana, M. G. (1986). Chapter 3 - Eight Forms of Corrosion. Corrosion Engineering(Third Edition). Fontana, M. G. New York, McGraw-Hill:39-153.
    [29] Fowler, D. W. (2009). Chapter 7 - Repair Materials for Concrete Structures. Failure. Distress and Repair of Concrete Structures. Delatte, N. Cambridge, Woodhead Publishing: 194-207.
    [30] François, R., Laurens, S. and Deby, F. (2018). Chapter 1 - Steel Corrosion in Reinforced Concrete. Corrosion and its Consequences for Reinforced Concrete Structures. François, R., Laurens, S. and Deby, F. Amsterdam, Elsevier: 1-41.
    [31] Frankel, G. S. (1998). Pitting Corrosion of Metals: A Review of the Critical Factors. Journal of The Electrochemical Society 145(6): 2186.
    [32] Güneyisi, E., Gesoğlu, M. and Algin, Z. (2013). Chapter 9 - Performance of Self-Compacting Concrete (SCC) with High-Volume Supplementary Cementitious Materials (SCMs). Eco-Efficient Concrete. Pacheco-Torgal, F., Jalali, S., Labrincha, J. and John, V. M. Cambridge, Woodhead Publishing: 198-217.
    [33] Hack, H. P. (1988). Galvanic Corrosion Caused by Corrosion Products. Galvanic corrosion. Hack, H. P. West Conshohocken, PA, ASTM International: 23-35.
    [34] Heusler, K., Landolt, D. and Trasatti, S. (1989). Electrochemical Corrosion Nomenclature (Recommendations 1988). Pure and applied chemistry 61(1): 19-22.
    [35] Hu, J. Y., Zhang, S. S., Chen, E. and Li, W. G. (2022). A Review on Corrosion Detection and Protection of Existing Reinforced Concrete (RC) Structures. Construction and Building Materials 325: 126718.
    [36] Issa, C. A. (2009). Chapter 6 - Methods of Crack Repair in Concrete Structures. Failure, Distress and Repair of Concrete Structures. Delatte, N. Cambridge, Woodhead Publishing: 169-193.
    [37] JC/T 986-2018 (2018),水泥基灌浆材料,中華人民共和國建材行業標準,中華人民共和國工業和信息化部,北京。
    [38] JIS G4051 (2016),機械構造用碳鋼化學成分表,日本產業規格,日本產業標準調查會,東京。
    [39] Johnsen, R. O. Y. (2007). Chapter 4 - Experience with the Use of Copper Alloys in Seawater Systems on the Norwegian Continental Shelf. Corrosion Behaviour and Protection of Copper and Aluminium Alloys in Seawater. Féron, D. Cambridge, Woodhead Publishing: 62-72.
    [40] Jones, D. A. (1996). Chapter 5 - Polarization Methods to Measure Corrosion Rate. Principles and Prevention of Corrosion. Jones, D. A. Upper Saddle River, Prentice Hall.
    [41] Khoshnaw, F. and Gubner, R. (2020). Part I: General Aspects of Corrosion, Corrosion Control, and Corrosion Prevention. Corrosion Atlas Case Studies. Khoshnaw, F. and Gubner, R. Amsterdam, Elsevier: xxv-xli.
    [42] Kolotyrkin, Y. M., Losev, V. V. and Chemodanov, A. N. (1988). Relationship between Corrosion Processes and Oxygen Evolution on Anodes Made from Noble Metals and Related Metal Oxide Anodes. Materials Chemistry and Physics 19(1): 1-95.
    [43] Magar, H. S., Hassan, R. Y. A. and Mulchandani, A. (2021). Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors (Basel) 21(19): 6578.
    [44] Combrade, P. (2011). Crevice Corrosion of Metallic Materials. Corrosion mechanisms in theory and practice(Third Edition). Marcus, P. Florida, CRC press: 449-499.
    [45] Martinola, G., Meda, A., Plizzari, G. A. and Rinaldi, Z. (2010). Strengthening and Repair of RC Beams with Fiber Reinforced Concrete. Cement and Concrete Composites 32(9): 731-739.
    [46] Mayer, T. F., Gehlen, C. and Dauberschmidt, C. (2021). Chapter 16 - Corrosion Monitoring in Concrete. Techniques for Corrosion Monitoring (Second Edition). Yang, L. Cambridge, Woodhead Publishing: 379-405.
    [47] Mehta, P. K. (1986). Chapter 5 - Durability. Concrete: Structure, Properties and Materials. Mehta, P. K. Berkeley, McGraw-Hill.
    [48] Moffatt, E. G. (2016). Durability of Rapid-Set (Ettringite-Based) Concrete. ACI Materials Journal: 105-115.
    [49] Murray, M. A. (2009). Chapter 11 - Patching of Deteriorated Concrete Structures. Failure, Distress and Repair of Concrete Structures. Delatte, N. Cambridge, Woodhead Publishing: 282-295.
    [50] Newton, C. and Sykes, J. (1988). A Galvanostatic Pulse Technique for Investigation of Steel Corrosion in Concrete. Corrosion Science 28(11): 1051-1074.
    [51] Popov, B. N. (2015). Chapter 2 - Thermodynamics in the Electrochemical Reactions of Corrosion. Corrosion Engineering. Popov, B. N. Amsterdam, Elsevier: 29-92.
    [52] Popov, B. N. (2015). Chapter 5 - Basics of Corrosion Measurements. Corrosion Engineering. Popov, B. N. Amsterdam, Elsevier: 181-237.
    [53] Pourbaix, M. (1966). Chapter 4 - Establishment and Interpretation of Potehtial-pH Equilibrium Diagrams. Atlas of Electrochemical Equilibria in Aqueous Solutions. Pourbaix, M. Texas, NACE: 307-343.
    [54] Poursaee, A. (2016). Chapter 9 - Corrosion Measurement and Evaluation Techniques of Steel in Concrete Structures. Corrosion of Steel in Concrete Structures. Poursaee, A. Oxford, Woodhead Publishing: 169-191.
    [55] Revie, R. W. (2008). Chapter 1 - Definition and Importance of Corrosion. Corrosion and Corrosion Control: an Introduction to Corrosion Science and Engineering. Revie, R. W. New Jersey, John Wiley & Sons: 1-8.
    [56] Ropital, F. (2011). Chapter 15 - Environmental Degradation in Hydrocarbon Fuel Processing Plant: Issues and Mitigation. Advances in Clean Hydrocarbon Fuel Processing. Khan, M. R. Cambridge, Woodhead Publishing: 437-462.
    [57] Smith, W. S. and Hashemi, J. (2006). Chapter 13 - Corrosion. Foundations of Materials Science and Engineering(Fourth Edition). Smith, W. S. and Hashemi, J. New York, McGraw-Hill Higher Education: 751-753.
    [58] Sukhotin, A. M. and Kartashova, K. M. (1965). The Passivity of Iron in Acid and Alkaline Solutions. Corrosion Science 5(5): 393-407.
    [59] Sun, H. (2021). Chapter 4 - Electrochemical Polarization Technique Based on the Nonlinear Region Weak Polarization Curve Fitting Analysis. Techniques for Corrosion Monitoring(Second Edition). Yang, L. Cambridge, Woodhead Publishing: 79-98.
    [60] Wagner, P., Lein, P. and Gonzalez, D. (2011). Chapter 3 - Aging Factors Related to Ferrous and Non-Ferrous Metals. Techniques to Evaluate Long-Term Aging of Systems. Wagner, P., Lein, P. and Gonzalez, D. New York, Quanterion Solutions Incorporated: 59-60.
    [61] Wang, L., Chen, L. and Tsang, D. C. W. (2020). Chapter 5 - Green Remediation by Using Low-Carbon Cement-Based Stabilization/Solidification Approaches. Sustainable Remediation of Contaminated Soil and Groundwater. Hou, D. Beijing, Butterworth-Heinemann: 93-118.
    [62] Woodson, R. D. (2009). Chapter 6 - Materials and Methods for Repair and Rehabilitation. Concrete Structures. Woodson, R. D., Boston, Butterworth-Heinemann: 61-81.
    [63] 中國土木水利工程學會 (2012),混凝土工程設計規範與解說(土木401-96),台北市,科技圖書公司:E-8。
    [64] 朱衛華 (2009),水泥基灌漿料的發展,施工技術:76-77,80。
    [65] 吳靖賢 (2014),影響混凝土中鋼筋腐蝕量測之因子探討,碩士論文,營建工程系,國立臺灣科技大學。
    [66] 林金面 (2011),工程材料,台北市,文荃書局股份有限公司。
    [67] 紀茂傑 (2002),混凝土耐久性影響因素及評估方法之研究,博士論文,河海工程學系,國立海洋大學。
    [68] 遲培云、張偉剛、陳誠意、何朋祥、青島理工大學、青島建設集團華友公司 (2009),不同膠凝材料中的鋼筋陽極極化電位-時間關係曲線,混凝土:53-56,61。
    [69] 範慶新、鄧春林、韋江雄、廣東工業大學建設學院、中交四航工程研究院有限公司、華南理工大學特種功能材料教育部重點實驗室 (2008),混凝土中鋼筋鏽蝕的電化學無損檢測技術,武漢理工大學學報:70-73。
    [70] 劉佑璿 (2020),受拉後鋼筋之腐蝕行為研究,碩士論文,營建工程系,國立臺灣科技大學。

    無法下載圖示 全文公開日期 2028/08/22 (校內網路)
    全文公開日期 2028/08/22 (校外網路)
    全文公開日期 2028/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE