簡易檢索 / 詳目顯示

研究生: 林承洋
Cheng-Yang Lin
論文名稱: 渦流引致振動能源轉換器排列的基因演算法最佳化應用
Genetic algorithm for optimal arrangement of vortex-induced vibration energy converter
指導教授: 陳明志
Ming-Jyh Chern
口試委員: 牛仰堯
Yang-Yao Niu
林怡均
Yi-Jiun Lin
林柏廷
Po-Ting Lin
陳明志
Ming-Jyh Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 80
中文關鍵詞: 渦流引致振動能源轉換器基因演算法直接施力沉浸邊界法最佳化
外文關鍵詞: Vortex-induced vibration, energy converter, genetic algorithm, direct-forcing immersed boundary method, optimization
相關次數: 點閱:237下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今人類社會使用的能源如電力,大部分都是來自化石燃料。 而這些不可再生能源除了在未來有可能會耗盡以外, 其伴隨使用時所產生的環境汙染, 使國際社會上意識到可再生能源的重要性。 渦流引致振動能源轉換器是海洋發電領域的一種技術。 在本研究中,基因演算法結合數值方法被成功地運用在決定渦流引致振動能源轉換器的位置,能源轉換器的擺放位置對於效率存在不可忽略的影響(例如:風場中的風機排列)。 因此,本研究利用基因演算法找出最佳擺放位置來提升能源轉換器陣列的效率。 然而,在各領域的最佳化研究中, 基因演算法被認為是強大且其優化結果能逼近全域最佳化的方法之一。 此外,本研究使用直接施力沉浸邊界法模擬流固耦合,此數值方法能有效模擬流體與固體之間的交互運動。 本研究應用此方法來模擬海洋中流體流經渦流引致振動能源轉換器陣列,透過基因演算法的演化結果得出最佳位置,渦流引致振動能源轉換器的排列能夠提升能源轉換器陣列輸出的效能,並且成功結合直接施力沉浸邊界法與基因演算法達到最佳化的目標


    The energy used by human society today, such as electricity, most of it comes from fossil fuels. In addition to these non-renewable energy sources will be exhausted in the future, the environmental pollution generated when producing electricity, so the international community aware of the importance of renewable energy. Vortex-induced vibration (VIV) energy converter is a technology in ocean energy harvesting. In this study, genetic algorithm (GA) coupled with computational fluid dynamics (CFD) were successfully developed and utilized to determine the location of the vortex-induced vibration (VIV) energy converter, the location of the energy converter has a non-negligible effect on efficiency, such as the arrangement of wind turbines in the wind farm. Therefore, this study uses genetic algorithm to find the optimal location to improve the efficiency of the energy converter arrangement. However, in the optimization research in various fields, the genetic algorithm is considered to be one of the powerful and its optimization result can approach the global optimization. Moreover, this study uses the direct-forcing immersed boundary (DFIB) method to simulate fluid-solid interaction, this numerical method performs effectively for simulating the interaction between the fluid and solid. This study applied the coupled method to simulate the flow past through vortex-induced vibration (VIV) energy converter array, the optimal location was obtained through the evolution of genetic algorithm and successfully coupled the direct-forcing immersed boundary (DFIB) method and genetic algorithm to achieve the goal of optimization.

    CONTENTS Chinese Abstract...................................i Abstract ........................................iii Acknowledgements..................................v Contents........................................vii Nomenclatures ....................................ix List of Tables.....................................xv List of Figures.....................................xvii 1 INTRODUCTION1 2 MATHEMATICALANDNUMERICALMODEL9 2.1 GeneticAlgorithm...............................10 2.1.1 Real-CodedGeneticAlgorithm....................10 2.1.2 Population................................11 2.1.3 FitnessfunctionandSelection.....................12 2.1.4 Crossover(Recombination).......................14 2.1.5 Mutation................................14 2.2 Governingequations..............................20 2.3 NumericalmethodsforsolvingNavier-Stokesequations...........20 2.4 Theequationofcylindermotion........................22 2.5 Direct-forcing immersed boundary method..................26 2.6 ValidationofDFIBmodel...........................29 2.6.1 Computationaldomainandboundaryconditions...........29 2.6.2 Gridindependenceandvalidationofin-house numerical code....32 3 RESULTSANDDISCUSSION39 3.1 Optimizationresultsfor2+1energyconverters...............40 3.2 Optimizationresultsfor4+3energyconverters...............46 4 CONCLUSIONSANDFUTUREWORK53 4.1 Conclusions...................................53 4.2 Futureworks..................................54 BIBLIOGRAPHY ..................................57

    [1] Ringwood, J., Butler, S., 2004 Optimization of a wave energy converter.IFAC Proceedings Volumes,37(10), 155-160.
    [2] Draper, S., Houlsby, G.T., Oldfield, M.L.G, Borthwick, A.G.L., 2010 Modelling tidal energy extraction in a depth-averaged coastal domain.IET Renewable Power Generation,4(6), 545–554.
    [3] Draper, S., Borthwick, A.G.L., Houlsby, G.T., 2013 Energy potential of a tidal fence deployed near a coastal headland.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,371(1985), 20120176-20120176.
    [4] Adcock, T.A.A., Draper, S., Houlsby, G.T., Borthwick, A.G.L. and Serhadlio ̆glu, S., 2013 The available power from tidal stream turbines in the Pentland Firth.Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,469(2157), 20130072–20130072.
    [5] Serhadlıo ̆glu, S., Adcock, T.A.A., Houlsby, G.T., Draper, S. and Borthwick, A.G.L.,2013 Tidal stream energy resource assessment of the Anglesey Skerries.InternationalJournal of Marine Energy,3-4, e98–e111.
    [6] Draper, S., Adcock, T.A.A., Borthwick, A.G.L., Houlsby, G.T., 2014 Estimate of the tidal stream power resource of the Pentland Firth.Renewable Energy,63, 650-657.
    [7] Draper, S., Adcock, T.A.A., Borthwick A.G.L., Houlsby, G.T., 2013 An electrical analogy for the Pentland Firth tidal stream power resource.Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,470(2161), 20130207-20130207.
    [8] Adcock, T.A.A, Draper, S., Houlsby, G.T., Borthwick A.G.L. and Serhadlioglu, S.,2014 Tidal stream power in the Pentland Firth - long-term variability, multiple constituents and capacity factor.Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,228(8), 854-861.
    [9] Draper, S., Adcock, T.A.A., Borthwick, A.G.L., Houlsby, G.T., 2014 A note on the power potential of tidal currents in channels.International Journal of Marine Energy,6, 1–17.
    [10] Bernitsas, M.M., Raghavan, K., Ben-Simon, Y., Garcia, E.M.H., 2006 VI-VACE(Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Gen-ration of Clean and Renewable Energy From Fluid Flow.Proceedings of OffshoreMechanics and Arctic Engineering, Hamburg, Germany.
    [11] Akira, O., 2000 Mulidisciplinary optimization of transonic wing design based on evolutionary algorithms coupled with cfd solver.European Congress on ComputationalMethods in Applied Sciences and Engineering ECCOMAS, 11-14 Barcelona, Spain.
    [12] Sharma, R., Rajagopal, K., Anand, S., 2000 A genetic algorithm based approach for robust evaluation of form tolerances.Journal of Manufacturing Systems,19(1),46-57.
    [13] Konak, A., Coit, D.W., Smith, A.E., 2006 Multi-objective optimization using genetic algorithms: A tutorial.Reliability Engineering and System Safety,91(9), 992-1007
    [14] Mosetti, G., Poloni, C., Diviacco, B., 1994 Optimization of wind turbine positioning in large wind farms by means of a genetic algorithm.Journal of Wind Engineering and Industrial Aerodynamics,51(1), 105-116
    [15] Grady, S.A., Hussaini, M.Y., Abdullah, M.M., 2005 Placement of wind turbines using genetic algorithms.Renewable Energy,30(2), 259–270
    [16] Chen, Y., Li, H., Jin, K. and Song, Q., 2013 Wind farm layout optimization using genetic algorithm with different hub height wind turbines.Energy Conversion and Management,70, 56–65.
    [17] Sharp, C., DuPont, B. 2018 Wave energy converter array optimization: A genetic algorithm approach and minimum separation distance study.Ocean Engineering,163,148–156.
    [18] Peskin, C.S., 1972 Flow patterns around heart valve: a numerical method.Journal of Computational Physics,10, 252-271.
    [19] Mohd. Yusof, J., 1996 Interaction of massive particles with turbulence.PhD. Dissertation, Dept. of Mechanical and Aerospace Engineering, Cornell University, USA.
    [20] Roma, A.M., Peskin, C.S. and Berger, M.J., 1999 An adaptive version of the immersed boundary method.Journal of Computational Physics,153, 509–534.
    [21] Noor, D.Z., Chern, M.J. and Horng, T. L., 2009 An immersed boundary method to solve fluid-solid interaction problems.Computational Mechanic,44, 447-453.
    [22] Holland, J.H., 1975Adaption in natural and artificial systems, MIT press ltd, Massachusetts, USA.
    [23] Goldberg, D.E., 1989Genetic algorithms in search, optimization and machine learning, Addison-wesley, Boston, USA.
    [24] Md Salleh, S., Tokhi, M.O., Toha, S.F., 2009 Real-coded genetic algorithm identification of a flexible plate system. In Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Signal Processing, SystemsModeling and Control, 124-129
    [25] Chorin, A.J., 1967 A numerical method for solving incompressible viscous flow problems.Journal of Computational Physics,2(1), 12–26.
    [26] Leonard, B.P., 1979 A stable and accurate convective modelling procedure based on quadratic upstream interpolation.Computer Method in Applied Mechanic and Engineering,19, 59-98.
    [27] Chern, M.J., Kuan, Y.H., Nugroho, G., Lu, G.T. and Horng, T.L., 2014 Direct-forcing immersed boundary modeling of vortex-induced vibration of a circular cylinder. Journal of Wind Engineering and Industrial Aerodynamics,134, 109-121.
    [28] Leontini, J.S., Thompson, M.C., Hourigan, K., 2006 The beginning of branching behaviour of vortex-induced vibration during two-dimensional flow.Journal of Fluids and Structures,22, 857-864.
    [29] Dettmer, W.G., Peric, D., 2006 A computational framework for fluid rigid body interaction: finite element formulation and applications.Computer Method in AppliedMechanics and Engineering,195, 1633-1666.
    [30] Roshko, A., 1954 On the development of turbulent wakes from vortex streets, California Institute of Technology, USA.

    無法下載圖示 全文公開日期 2025/07/27 (校內網路)
    全文公開日期 2025/07/27 (校外網路)
    全文公開日期 2025/07/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE