簡易檢索 / 詳目顯示

研究生: 林思岑
Sz-Tsen Lin
論文名稱: 具重複使用性之磷酸銀/類沸石咪唑骨架羧甲基化纖維素薄膜於可見光源下光催化降解染料之研究
Preparation of Ag3PO4/ZIF-8 composite of recyclable carboxymethylated cellulose membrane for photodegradation of dye solution under visible light source
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 黃旭曄
Xu-Ye Huang
陳俊傑
Jun-Jie Chen
陳榮宏
Rong-Hong Chen
安大中
Da-Zhong An
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 112
中文關鍵詞: Ag3PO4@ZIF-8複合材料Ag3PO4@ZIF-8羧甲基化纖維膜可見光光催化染料降解
外文關鍵詞: Ag3PO4@ZIF-8 composite, Ag3PO4@ZIF-8 carboxymethylated cellulose membrane, visible light, photocatalysis, dye degradation
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 源自於經濟成長和環境汙染等因素,全世界對能源的需求不斷增長進而助長了可再生能源的發展,因此利用再生能源處理汙染物的課題變得相當重要。然而太陽能清潔、豐富且容易獲得,且太陽為地球表面提供了巨大而持續的光能,使其成為最有前途的環境修復的再生能源之一。
    Metal organic frameworks (MOFs) 是一種新穎的有機—無機混成材料由於金屬離子和有機配體間特殊的協調作用使MOF具有3D結構和多種功能的應用。然而MOFs的性質會受到金屬離子的種類和有機配體鍵結的方式所影響,本實驗使用的ZIF-8在水中具有良好的穩定性且具有較大的表面積能吸附水中的汙染物,但是ZIF-8的能階過大無法受可見光激發產生催化作用,因此引進Ag3PO4與ZIF-8複合後所形成的材料Ag3PO4@ZIF-8使其在可見光具有光催化能力得以降解水中的汙染物。
    研究結果表示Ag3PO4@ZIF-8具有較低的電子-電洞結合率並且有較佳的光子利用率,且電子和電洞轉移速率更快。光降解研究結果顯示,Ag3PO4@ZIF-8粉體在可見光下經過120分鐘後分別可以降解99%的兩性離子型Rodamine B染料、95%的陰離子型Congo Red染料和90%的陽離子型Crystal Violet染料。降解效果和效率都比純Ag3PO4粉體和純ZIF-8粉體來的更佳。
    最後本實驗將纖維素薄膜經過羧甲基化後與ZIF-8和Ag3PO4形成複合材料薄膜Ag3PO4@ZIF-8/FP進行光降解實驗,在可見光照射下經過120分鐘可以分別降解98.4%的RhB、93.6%的CR和89.8%的CV,且薄膜具有重複使用性,經過五次循環實驗對RhB仍保有95%的降解效果。
    此研究顯示,本研究開發之Ag3PO4@ZIF-8複合材料在光催化應用上對三種離子型染料都具有良好的效能,與羧甲基化纖維素薄膜復合後的Ag3PO4@ZIF-8/FP同樣兼具優良的光催化效能和重複使用性。


    Due to the economic growth and environmental pollution, using renewable energy to treat pollutants has become very important. Therefore, solar energy is clean, abundant, and available, and it is one of the most potential renewable energy sources for environmental remediation.
    Metal organic frameworks (MOFs) are novel organic-inorganic hybrid materials. Because of the special coordination between metal ions and organic ligands, they have many applications and multiple functions. In this study we use ZIF-8 which has good stability in water and large surface area to adsorb pollutants. However, the energy band gap of ZIF-8 is too large to be excited by visible light, so we combine Ag3PO4 together to form Ag3PO4@ZIF-8 composite which has photocatalytic property under visible light source.
    According to the results, Ag3PO4@ZIF-8 has a lower electron-hole recombination rate and better photon utilization, and its electron and hole transfer rate is faster which also enhanced the conductivity. Moreover, the results of photodegradation studies show that Ag3PO4@ZIF-8 can degrade 99% of the zwitterionic dye Rodamine B, 95% of the anionic dye Congo Red and 90% of the cationic dye Crystal Violet after 120 minutes under visible light. The degradation activities and efficiencies are better than those of pure ZIF-8 and pure Ag3PO4.
    Finally, we use carboxymethylated cellulose membrane and combined with ZIF-8 and Ag3PO4 to make Ag3PO4@ZIF-8/FP composite membrane for photodegradation. After 120 minutes under visible light irradiation, Ag3PO4@ZIF-8/FP can degraded 98.4% of RhB, 93.6% CR and 89.8% CV. Moreover, after 5 cycles of experiments, the membrane still retains 95% degradation of RhB, which has reusable and stable behavior.
    In summary, Ag3PO4@ZIF-8 composite shows a great photocatalytic performance for three different ionic dyes under visible light. After developing the Ag3PO4@ZIF-8/FP composite membrane, it has both excellent photocatalytic efficiency and reusability.

    摘要 Abstract 目錄 圖目錄 表目錄 第1章 前言 1.1. 研究背景 第2章 文獻回顧與原理 2.1. 光催化材料簡介 2.1.1. 光催化反應 2.2. 修飾光催化劑的性質 2.2.1. 貴金屬沉積 2.2.2. 半導體複合物 2.2.3. 金屬或非金屬顆粒摻雜 2.2.4. 表面染料光敏化 2.3. 磷酸銀簡介 2.3.1. Ag3PO4與金屬氧化物複合 2.3.2. Ag3PO4與銀基材料複合 2.3.3. Ag3PO4與碳材料複合 2.4. 金屬有機骨架材料 2.4.1. MOF在光催化的研究 2.4.2. MOF光催化材料的優勢 2.5. MOF光催化劑的分類 2.5.1. ZIF-MOFs型 2.5.2. UiO-MOFs型 2.5.3. MIL-MOFs型 2.6. ZIF-8 材料簡介 2.6.1. ZIF-8的合成方法 2.6.2. ZIF-8的特性和應用 2.7. 可回收性光催化劑薄膜 2.8. 研究動機與目的 第3章 實驗 3.1. 實驗藥品 3.2. 實驗設備及儀器 3.3. 實驗流程圖 3.4. 樣品製備 3.4.1. 合成Ag3PO4粉體 3.4.2. 合成ZIF-8粉體 3.4.3. 合成Ag3PO4@ZIF-8粉體 3.4.4. 羧甲基化纖維素薄膜 (FP) 3.4.5. 製備ZIF-8/FP薄膜 3.4.6. 製備Ag3PO4@ZIF-8/FP薄膜 3.5. 分析方法 3.5.1. 場發射掃描式電子顯微鏡 (FE-SEM) 3.5.2. X射線繞射儀 (XRD) 3.5.3. 比表面積及孔徑分析儀 (BET) 3.5.4. X射線光電子能譜儀 (XPS) 3.5.5. 紫外光-可見光分析儀 (UV-Vis/NIR) 3.5.6. 螢光光譜儀 (PL) 3.5.7. 雷射奈米粒徑電位分析儀(Zetasizer) 3.5.8. 電化學工作站 (EIS) 第4章 結果與討論 4.1. Ag3PO4@ZIF-8複合材料的物性分析 4.1.1. 微結構分析 (FE-SEM) 4.1.2. 結晶度分析 (XRD) 4.1.3. 元素鍵結分析 (XPS) 4.1.4. 比表面積及表面電位分析 (BET、Zeta ) 4.1.5. 光學特性分析 (UV-vis、PL) 4.1.6. 電化學阻抗分析 (EIS) 4.1.7. Mott-Schottky 分析 4.2. 光催化效能分析 4.2.1. 材料對三種染料的降解效果比較 4.2.2. 總有機碳量(TOC)分析 4.2.3. pH值對吸附和降解效果影響 4.2.4. 粉體重複降解效率 4.2.5. 複合材料的光催化機制 4.3. 複合材料纖維素薄膜特性分析 4.3.1. 微結構分析 (FE-SEM) 4.3.2. 薄膜光降解效能分析 第5章 結論 第6章 參考文獻

    1. Yin, J., Z. Zou, and J. Ye, Photophysical and Photocatalytic Properties of MIn0.5Nb0.5O3 (M = Ca, Sr, and Ba). The Journal of Physical Chemistry B, 2002. 107(1): p. 61-65.
    2. Chavadej, S., et al., Photocatalytic degradation of 2-propanol by using Pt/TiO2 prepared by microemulsion technique. Chemical Engineering Journal, 2008. 137(3): p. 489-495.
    3. Hoque, M.A. and M.I. Guzman, Photocatalytic Activity: Experimental Features to Report in Heterogeneous Photocatalysis. Materials (Basel), 2018. 11(10).
    4. Kotolevich, Y., et al., Au/TiO 2 catalysts promoted with Fe and Mg for n -octanol oxidation under mild conditions. Catalysis Today, 2016. 278: p. 104-112.
    5. Klein, M., et al., The effect of metal cluster deposition route on structure and photocatalytic activity of mono- and bimetallic nanoparticles supported on TiO2 by radiolytic method. Applied Surface Science, 2016. 378: p. 37-48.
    6. Kang, M.G., H.-E. Han, and K.-J. Kim, Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 1999. 125(1-3): p. 119-125.
    7. Chu, H., et al., Synergetic effect of TiO2 as co-catalyst for enhanced visible light photocatalytic reduction of Cr(VI) on MoSe2. Applied Catalysis A: General, 2016. 521: p. 19-25.
    8. Arabzadeh, A. and A. Salimi, One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation. J Colloid Interface Sci, 2016. 479: p. 43-54.
    9. Kitano, M., et al., Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. J Phys Chem B, 2006. 110(50): p. 25266-72.
    10. Wu, G. and A. Chen, Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications. Journal of Photochemistry and Photobiology A: Chemistry, 2008. 195(1): p. 47-53.
    11. Wang, Q., et al., Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance. Journal of Alloys and Compounds, 2017. 690: p. 139-144.
    12. Nguyen, T.L., et al., Improved photodegradation of antibiotics pollutants in wastewaters by advanced oxidation process based on Ni-doped TiO2. Chemosphere, 2022. 302: p. 134837.
    13. El-Sheikh, S.M., et al., Visible light activated carbon and nitrogen co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen. Separation and Purification Technology, 2017. 173: p. 258-268.
    14. Gautam, J., J.-M. Yang, and B.L. Yang, Transition metal co-doped TiO2 nanotubes decorated with Pt nanoparticles on optical fibers as an efficient photocatalyst for the decomposition of hazardous gaseous pollutants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022. 643.
    15. Wan, J., et al., Ternary composites of TiO2 nanotubes with reduced graphene oxide (rGO) and meso-tetra (4-carboxyphenyl) porphyrin for enhanced visible light photocatalysis. International Journal of Hydrogen Energy, 2016. 41(33): p. 14692-14703.
    16. Albay, C., et al., New dye sensitized photocatalysts: Copper(II)-phthalocyanine/TiO2 nanocomposite for water remediation. Journal of Photochemistry and Photobiology A: Chemistry, 2016. 324: p. 117-125.
    17. Amaral, R., et al., Physical and optical properties of Ag3PO4 decorated TiO2 based nanostructures. Journal of Solid State Chemistry, 2022. 305.
    18. Bortolotto, V., et al., Photocatalytic behaviour of Ag3PO4, Fe3O4 and Ag3PO4/Fe3O4 heterojunction towards the removal of organic pollutants and Cr(VI) from water: Efficiency and light-corrosion deactivation. Inorganic Chemistry Communications, 2022. 141.
    19. Dai, Y., et al., Photodegradation of acenaphthylene over plasmonic Ag/Ag3PO4 nanopolyhedrons synthesized via in-situ reduction. Applied Surface Science, 2022. 572.
    20. Romanos, G.E., et al., Hybrid Ultrafiltration/Photocatalytic Membranes for Efficient Water Treatment. Industrial & Engineering Chemistry Research, 2013. 52(39): p. 13938-13947.
    21. Xu, Z., et al., In-situ fabrication and photocatalytic activity of AgBr/Ag3PO4 heterojunctions. Materials Letters, 2022. 323.
    22. Raeisi-Kheirabadi, N. and A. Nezamzadeh-Ejhieh, A Z-scheme g-C3N4/Ag3PO4 nanocomposite: Its photocatalytic activity and capability for water splitting. International Journal of Hydrogen Energy, 2020. 45(58): p. 33381-33395.
    23. Deng, M. and Y. Huang, The phenomena and mechanism for the enhanced adsorption and photocatalytic decomposition of organic dyes with Ag3PO4/graphene oxide aerogel composites. Ceramics International, 2020. 46(2): p. 2565-2570.
    24. Wang, L., et al., Metal–organic frameworks for energy storage: Batteries and supercapacitors. Coordination Chemistry Reviews, 2016. 307: p. 361-381.
    25. Wang, W., et al., Recent Progress in Metal-Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting. Adv Sci (Weinh), 2017. 4(4): p. 1600371.
    26. Zhao, S.-N., et al., Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors. Coordination Chemistry Reviews, 2017. 337: p. 80-96.
    27. Zhao, S.-N., et al., An ideal detector composed of a 3D Gd-based coordination polymer for DNA and Hg2+ ion. Inorganic Chemistry Frontiers, 2016. 3(3): p. 376-380.
    28. Singco, B., et al., Approaches to drug delivery: Confinement of aspirin in MIL-100(Fe) and aspirin in the de novo synthesis of metal–organic frameworks. Microporous and Mesoporous Materials, 2016. 223: p. 254-260.
    29. Wang, B., et al., Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 2008. 453(7192): p. 207-11.
    30. Bárcia, P.S., et al., Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66. Microporous and Mesoporous Materials, 2011. 139(1-3): p. 67-73.
    31. Qiu, Y.C., et al., Face-Sharing Archimedean Solids Stacking for the Construction of Mixed-Ligand Metal-Organic Frameworks. J Am Chem Soc, 2019. 141(35): p. 13841-13848.
    32. Lu, W., et al., Tuning the structure and function of metal-organic frameworks via linker design. Chem Soc Rev, 2014. 43(16): p. 5561-93.
    33. Shultz, A.M., et al., A catalytically active, permanently microporous MOF with metalloporphyrin struts. J Am Chem Soc, 2009. 131(12): p. 4204-5.
    34. Chughtai, A.H., et al., Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem Soc Rev, 2015. 44(19): p. 6804-49.
    35. Xi, J., et al., (Fe,Co)@nitrogen-doped graphitic carbon nanocubes derived from polydopamine-encapsulated metal-organic frameworks as a highly stable and selective non-precious oxygen reduction electrocatalyst. Chem Commun (Camb), 2015. 51(52): p. 10479-82.
    36. Sun, J.-K. and Q. Xu, Functional materials derived from open framework templates/precursors: synthesis and applications. Energy & Environmental Science, 2014. 7(7).
    37. Xiao, J.D., et al., Boosting Photocatalytic Hydrogen Production of a Metal-Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. Angew Chem Int Ed Engl, 2016. 55(32): p. 9389-93.
    38. Salari, H. and M. Sadeghinia, MOF-templated synthesis of nano Ag2O/ZnO/CuO heterostructure for photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2019. 376: p. 279-287.
    39. Gomes Silva, C., et al., Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. Chemistry, 2010. 16(36): p. 11133-8.
    40. Wei, S., et al., Integration of Phosphotungstic Acid into Zeolitic Imidazole Framework-67 for Efficient Methylene Blue Adsorption. ACS Omega, 2022. 7(11): p. 9900-9908.
    41. Yuan, C., et al., ZIF-67 with Argon annealing treatment for visible light responsive degradation of organic dyes in a wide pH range. Microporous and Mesoporous Materials, 2019. 285: p. 13-20.
    42. Cavka, J.H., et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc, 2008. 130(42): p. 13850-1.
    43. Lee, Y., et al., Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. Chem Commun (Camb), 2015. 51(26): p. 5735-8.
    44. Wei, Y.P., et al., Different functional group modified zirconium frameworks for the photocatalytic reduction of carbon dioxide. Dalton Trans, 2019. 48(23): p. 8221-8226.
    45. Wang, D., M. Wang, and Z. Li, Fe-Based Metal–Organic Frameworks for Highly Selective Photocatalytic Benzene Hydroxylation to Phenol. ACS Catalysis, 2015. 5(11): p. 6852-6857.
    46. Xu, B., et al., Glycol assisted synthesis of MIL-100(Fe) nanospheres for photocatalytic oxidation of benzene to phenol. Catalysis Communications, 2017. 98: p. 112-115.
    47. Phan, A., et al., Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res, 2010. 43(1): p. 58-67.
    48. Huang, X.C., et al., Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed Engl, 2006. 45(10): p. 1557-9.
    49. Park, K.S., et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A, 2006. 103(27): p. 10186-10191.
    50. Wang, Z., et al., Improving ZIF-8 stability in the preparation process of polyimide-based organic solvent nanofiltration membrane. Separation and Purification Technology, 2019. 227.
    51. Aceituno Melgar, V.M., J. Kim, and M.R. Othman, Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance. Journal of Industrial and Engineering Chemistry, 2015. 28: p. 1-15.
    52. Schejn, A., et al., Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. CrystEngComm, 2014. 16(21): p. 4493-4500.
    53. Nasrollahi, N., et al., Photocatalytic-membrane technology: a critical review for membrane fouling mitigation. Journal of Industrial and Engineering Chemistry, 2021. 93: p. 101-116.
    54. Shi, G., et al., Zr-based MOF @ carboxymethylated filter paper: Insight into construction and methylene blue removal mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 613.
    55. Gross, A.F., E. Sherman, and J.J. Vajo, Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Trans, 2012. 41(18): p. 5458-60.
    56. Cheng, J., et al., Preparation of Zeolitic Imidazolate Frameworks and Their Application as Flame Retardant and Smoke Suppression Agent for Rigid Polyurethane Foams. Polymers (Basel), 2020. 12(2).
    57. Batvandi, M., A. Haghighatzadeh, and B. Mazinani, Synthesis of Ag3PO4 microstructures with morphology-dependent optical and photocatalytic behaviors. Applied Physics A, 2020. 126(7).
    58. Cheng, R., et al., Photocatalytic Inactivation of Bacteriophage f2 with Ag3PO4/g-C3N4 Composite under Visible Light Irradiation: Performance and Mechanism. Catalysts, 2018. 8(10).
    59. Wang, T., et al., Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde. Chem Sci, 2020. 11(26): p. 6670-6681.
    60. Yan, X., et al., Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. Journal of Physics D: Applied Physics, 2004. 37(6): p. 907-913.
    61. Chang, N., et al., Facile construction of Z-scheme AgCl/Ag-doped-ZIF-8 heterojunction with narrow band gaps for efficient visible-light photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 616.
    62. Si, Y., et al., Fabrication of a novel core–shell CQDs@ZIF-8 composite with enhanced photocatalytic activity. Journal of Materials Science, 2020. 55(27): p. 13049-13061.
    63. Tauc, J., Optical Properties and Electronic Structure of Amorphous Ge and Si. Materials Research Bulletin, 1976. 3: p. 37-46.
    64. Davis, E.A. and N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical Magazine, 1970. 22(179): p. 0903-0922.
    65. Huang, Z., et al., Stable core–shell ZIF-8@ZIF-67 MOFs photocatalyst for highly efficient degradation of organic pollutant and hydrogen evolution. Journal of Materials Research, 2021. 36(3): p. 602-614.
    66. Kadiya, K., et al., Comparative photocatalytic dye and drug degradation study using efficient visible light-induced silver phosphate nanoparticles. Environ Sci Pollut Res Int, 2021. 28(34): p. 46390-46403.
    67. Izadpanah Ostad, M., M. Niknam Shahrak, and F. Galli, The influence of different synthetic solvents on photocatalytic activity of ZIF-8 for methanol production from CO2. Microporous and Mesoporous Materials, 2021. 326.
    68. Wang, Y., et al., Co-precipitation synthesis of reusable ZnAl-CLDH/ZIF-8 heterojunction for enhanced photodegradation of organic dye. Journal of Materials Science: Materials in Electronics, 2021. 32(24): p. 28051-28064.
    69. Schneider, J.T., et al., Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations. Phys Chem Chem Phys, 2020. 22(27): p. 15723-15733.
    70. Hou, D., et al., Bi4Ti3O12 nanofibers-BiOI nanosheets p-n junction: facile synthesis and enhanced visible-light photocatalytic activity. Nanoscale, 2013. 5(20): p. 9764-72.
    71. Pan, H., et al., High-efficiency, compressible, and recyclable reduced graphene oxide/chitosan composite aerogels supported g-C3N4/BiOBr photocatalyst for adsorption and degradation of rhodamine B. Journal of Environmental Chemical Engineering, 2022. 10(2).
    72. Wang, Z., et al., Efficient and sustainable photocatalytic degradation of dye in wastewater with porous and recyclable wood foam@V2O5 photocatalysts. Journal of Cleaner Production, 2022. 332.
    73. Bai, W., et al., Robust and recyclable macroscopic g-C3N4/cellulose hybrid photocatalysts with enhanced visible light photocatalytic activity. Applied Surface Science, 2020. 504.
    74. Liu, C., et al., Recyclable and stable flexible photocatalyst of dopamine-assisted metal-free conductive polymer heterojunction. Materials Letters, 2018. 212: p. 239-242.
    75. Lan, M., et al., Hierarchical polyurethane/RGO/BiOI fiber composite as flexible, self-supporting and recyclable photocatalysts for RhB degradation under visible light. Journal of Industrial and Engineering Chemistry, 2022. 108: p. 109-117.
    76. Di, J., et al., Transparent g-C3N4 thin film: Enhanced photocatalytic performance and convenient recycling. Journal of Physics and Chemistry of Solids, 2021. 155.
    77. Zeng, Q., et al., Facile preparation of recyclable magnetic Ni@filter paper composite materials for efficient photocatalytic degradation of methyl orange. J Colloid Interface Sci, 2021. 582(Pt A): p. 291-300.
    78. Xu, M., et al., In-situ growth of W18O49@carbon clothes for flexible-easy-recycled photocatalysts with high performance. Materials Letters, 2018. 230: p. 224-227.

    無法下載圖示 全文公開日期 2032/09/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE