簡易檢索 / 詳目顯示

研究生: Girma Sisay
Girma Sisay Wolde
論文名稱: 用於選擇性有機轉化的金屬氧化物、氧硫化物和複合基光催化劑
Metal oxide, oxysulfide, and composite-based photocatalysts for selective organic transformations
指導教授: 郭東昊
DOng-Hau Kuo
口試委員: Dong-Hau Kuo
Dong-Hau Kuo
Yao-Tung Lin
Yao-Tung Lin
Chang-Mou Wu
Chang-Mou Wu
Ren-Kae Shiue
Ren-Kae Shiue
Wen-Cheng Ke
Wen-Cheng Ke
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 181
中文關鍵詞: 光触媒氧硫化物合成的选择性有机转化硝基芳香化合物金属氧化物
外文關鍵詞: Photocatalyst, oxysulfide, Composite, Selective organic transformation, Nitroaromatic compounds, metal oxide
相關次數: 點閱:211下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗第一部分著重於 Ce 和 Ga 共摻雜 Zn(O,S) 的合成方法及其性質,其中 Zn(O,S) 具有不同的 Ce 含量,所合成的催化劑用於將硝基苯 (NB) 和偶氮苯 (AB) 等具有 N=N 鍵的有機污染物光催化還原為增值化學品苯胺。 此外,同時評估了發生的析氫和有機轉化。 將鈰和鎵共摻雜到 Zn(O,S) 基質中可促進 NB 和 AB 的轉化以及 10% 乙醇水溶液中的氫析出。 這種顯著增強歸因於 Ce 和 Ga 摻雜劑的協同作用,形成捕獲光生電子的帶正電缺陷。正如阻抗譜 (EIS)、瞬態光電流 (TPC) 響應和光致發光 (PL) 測量所證實的那樣,捕獲機制是為了改善光生電荷分離和轉移。 具有最高性能的最佳組合物 (15Ce-5Ga-Zn(O,S)) 在不到 30 分鐘內成功地將 NB 和 AB 轉化為苯胺。 此外,在 10% 的乙醇溶液中產氫量最高,其產氫率為 7130 μmol∙g-1∙h-1,並提出了一種用於還原 NB 和 AB 的合理光催化氫化機制。
    第二部分為有缺陷的 Z 型 MgO/TiO2/g-C3N4 三元異質結構光催化劑的合成及其性質。 該材料用於在模擬太陽光照射下將二硝基苯 (DNB) 污染物還原為苯二胺 (PDA)。 Mott-Schottky (M-S) 圖分析和電子自旋共振 (ESR) 自由基捕獲實驗表明在 TiO2/g-C3N4 界面處形成了 Z 型異質結,這在電子空穴分離中起著至關重要的作用。 電子順磁共振 (EPR) 和 X 射線光電子能譜 (XPS) 分析證實,將 MgO 摻入結構中可進一步增強電荷分離,通過 Ti3+ 和 TiO2/MgO 界面處的氧空位 (OV) 缺陷形成。 此外,MgO 的表面鹼性通過形成硝基苯羥胺中間體來促進二硝基苯 (DNB) 異構體的轉化,該中間體可以很容易地還原為苯二胺。高效液相色譜 (HPLC) 分析表明具有PDA (95-98%) 的三元MgO/TiO2/g-C3N4複合材料相比於二元MgO/TiO2和TiO2/g-C3N4材料,更具有出色的選擇性,因此提出可能的反應途徑和光催化還原機理。
    第三部分,我們提出了在含有導電聚(鄰苯二胺,PoPD)聚合物的 Gd 摻雜 TiO2 納米棒上同時氧化苯甲醇 (BA) 和還原 p-DNB。本節檢查並描述了摻雜、表面改性和導電聚合物摻入對光催化有機轉化偶聯反應系統的綜合影響。 正如紫外-可見漫反射光譜 (DRS) 所證實,Gd 的摻雜和 PoPD 的摻入極大地增強了 TiO2 的光吸收能力。 此外,PoPD 的存在增強了電荷載流子的分離和傳輸,如 EIS、TPC 和 PL 所證明。 此外,這裡首次提出了溶劑對苯甲醇選擇性氧化結合二硝基苯還原的產物選擇性和產率的作用。 BA 被光生 h+ 氧化形成醛,在水中的產率為 76.3%,在乙腈溶劑中的產率為 90.6%。相反,在光生 e- 和 BA 脫氫產生的 H+ 的幫助下,p-DNB 在水中選擇性地還原為 p-NA(產率 80%)乙腈和 p-PDA(產率 85%)。這項工作展示了利用光生載流子的全部經濟潛力進行高效有機轉化的重要策略。


    The first part of this work focused on the synthesis and characterization of Ce and Ga codoped Zn(O,S) with different amounts of Ce. The as-synthesized catalyst was employed for photocatalytic reduction of organic pollutants like nitrobenzene (NB) and azobenzene (AB) with N=N bond into value-added chemical, aniline. In addition, simultaneous hydrogen evolution and organic conversion were evaluated. Codoping of cerium and gallium into the Zn(O,S) matrix boosted the conversion of NB and AB and hydrogen evolution in a 10% aqueous ethanol solution. This significant enhancement was attributed to the synergistic effects of Ce and Ga dopants to form positively charged defects that trap the photogenerated electron. The trapping mechanism is to improve the photogenerated charge separation and transfer, as confirmed with impedance spectroscopy (EIS), transient photocurrent (TPC) response, and photoluminescence (PL) measurements. The best composition with the highest performance (15Ce-5Ga-Zn(O,S)) successfully converted both NB and AB to aniline in less than 30 min. Furthermore, the highest hydrogen production with a rate of 7130 μmol∙g-1∙h-1 was achieved in a 10% ethanol solution. A plausible photocatalytic hydrogenation mechanism for the reduction of both NB and AB was also proposed.
    The second part deals with the construction and characterization of defective Z-scheme MgO/TiO2/g-C3N4 ternary heterostructure photocatalyst. The material was utilized for the reduction of recalcitrant dinitrobenzene (DNB) pollutants into phenylenediamine (PDA) under simulated solar light irradiation. Mott-Schottky (M-S) plot analysis and electron spin resonance (ESR) radical trapping experiment suggested the formation of Z-scheme heterojunction at the interface of TiO2/g-C3N4, which played a crucial role in the electron-hole separation. Incorporating MgO into the structure further enhances charge separation via Ti3+ and oxygen vacancy (OV) defects formation at the TiO2/MgO interface, as confirmed by electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) analyses. Besides, the surface basicity of MgO enhanced the conversion of dinitrobenzene (DNB) isomers through the formation of nitrophenylhydroxylamine intermediate which can easily be reduced to phenylenediamines (High-performance liquid chromatography (HPLC) analysis revealed excellent selectivity for PDAs (95-98%) with ternary MgO/TiO2/g-C3N4 composite compared to the binary MgO/TiO2 and TiO2/g-C3N4. A possible reaction pathway and photocatalytic reduction mechanism were proposed and elucidated.
    Thirdly, we reported simultaneous oxidation of benzyl alcohol (BA) and reduction of p-DNB over Gd-doped TiO2 nanorods decorated with conductive poly(o-phenylenediamine, PoPD) polymer. This section examines and describes the combined effect of doping, surface modification, and conducting polymer incorporation on coupled reaction systems for photocatalytic organic transformation. The doping of Gd and incorporation of PoPD highly enhanced the light absorption capability of TiO2, as confirmed by UV-vis diffuse reflectance spectroscopy (DRS). Also, the presence of PoPD enhanced charge carrier separation and transport, as proved by EIS, TPC, and PL. In addition, the role of solvents on product selectivity and yield for selective oxidation of benzyl alcohol combined with dinitrobenzene reduction was reported here for the first time. BA was oxidized by photogenerated h+ to form aldehyde with a yield of 76.3% in water and 90.6% in acetonitrile solvent. Conversely, p-DNB was selectively reduced to p-NA (yield, 80%) acetonitrile and p-PDA (yield, 85%) in water with the help of photogenerated e- and the H+ produced from BA dehydrogenation. This work demonstrates a vital strategy to utilize the full economic potential of photogenerated charge carriers for efficient organic transformations.

    none

    [1] J. Tiwari, P. Tarale, S. Sivanesan, A. Bafana, Environmental persistence, hazard, and mitigation challenges of nitroaromatic compounds, Environmental Science and Pollution Research, 26 (2019) 28650-28667.
    [2] P. Kumar, K.-H. Kim, J. Lee, J. Shang, M.I. Khazi, N. Kumar, G. Lisak, Metal-organic framework for sorptive/catalytic removal and sensing applications against nitroaromatic compounds, Journal of Industrial and Engineering Chemistry, 84 (2020) 87-95.
    [3] P. Kovacic, R. Somanathan, Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism, J. Appl. Toxicol., 34 (2014) 810-824.
    [4] S.S. Talmage, D.M. Opresko, C.J. Maxwell, C.J. Welsh, F.M. Cretella, P.H. Reno, F.B. Daniel, Nitroaromatic munition compounds: environmental effects and screening values, Reviews of environmental contamination and toxicology, (1999) 1-156.
    [5] T. Lu, Y. Yuan, Y. Jiao, Z. Wen, L. Wang, Y. Zhao, Y. Zhang, M. Li, X. Pu, T. Xu, Simultaneous spectrophotometric quantification of dinitrobenzene isomers in water samples using multivariate calibration methods, Chemom. Intell. Lab. Syst., 154 (2016) 72-79.
    [6] C. Zhang, T. Li, J. Zhang, S. Yan, C. Qin, Degradation of p-nitrophenol using a ferrous-tripolyphosphate complex in the presence of oxygen: The key role of superoxide radicals, Applied Catalysis B: Environmental, 259 (2019) 118030.
    [7] M. Bilal, A.R. Bagheri, P. Bhatt, S. Chen, Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds, Journal of Environmental Management, 291 (2021) 112685.
    [8] S. Ludwig, H. Tinwell, D. Rouquié, F. Schorsch, M. Pallardy, R. Bars, Potential new targets involved in 1, 3-dinitrobenzene induced testicular toxicity, Toxicol. Lett., 213 (2012) 275-284.
    [9] J.O. Oladele, O.M. Oyeleke, O.T. Oladele, O.D. Babatope, O.O. Awosanya, Nitrobenzene-induced hormonal disruption, alteration of the steroidogenic pathway, and oxidative damage in rat: protective effects of Vernonia amygdalina, Clinical Phytoscience, 6 (2020) 1-9.
    [10] S. Homma-Takeda, Y. Hiraku, Y. Ohkuma, S. Oikawa, M. Murata, K. Ogawa, T. Iwamuro, S. Li, G.F. Sun, Y. Kumagai, 2, 4, 6-trinitrotoluene-induced reproductive toxicity via oxidative DNA damage by its metabolite, Free radical research, 36 (2002) 555-566.
    [11] E.M. Lent, Wildlife Toxicity Assessment for 2, 4-Dinitrotoluene and 2, 6-Dinitrotoluene, in: Wildlife Toxicity Assessments for Chemicals of Military Concern, Elsevier, 2015, pp. 107-146.
    [12] M.-Q. Yang, B. Weng, Y.-J. Xu, Synthesis of In2S3–CNT nanocomposites for selective reduction under visible light, Journal of Materials Chemistry A, 2 (2014) 1710-1720.
    [13] A.S. Belousov, E.V. Suleimanov, Application of metal-organic frameworks as an alternative for metal oxide-based photocatalysts for production of industrially important organic chemicals, Green Chemistry, (2021).
    [14] M. Li, Y. Su, J. Hu, H. Geng, H. Wei, Z. Yang, Y. Zhang, Hydrothermal synthesis of porous copper microspheres towards efficient 4-nitrophenol reduction, Materials Research Bulletin, 83 (2016) 329-335.
    [15] K. Imamura, K. Nakanishi, K. Hashimoto, H. Kominami, Chemoselective reduction of nitrobenzenes having other reducible groups over titanium (IV) oxide photocatalyst under protection-, gas-, and metal-free conditions, Tetrahedron, 70 (2014) 6134-6139.
    [16] P. Zhou, D. Li, S. Jin, S. Chen, Z. Zhang, Catalytic transfer hydrogenation of nitro compounds into amines over magnetic graphene oxide supported Pd nanoparticles, international journal of hydrogen energy, 41 (2016) 15218-15224.
    [17] A.H. Romero, Reduction of Nitroarenes via Catalytic Transfer Hydrogenation Using Formic Acid as Hydrogen Source: A Comprehensive Review, ChemistrySelect, 5 (2020) 13054-13075.
    [18] W. Yu, H.-W. Lin, C.-S. Tan, Direct synthesis of Pd incorporated in mesoporous silica for solvent-free selective hydrogenation of chloronitrobenzenes, Chemical Engineering Journal, 325 (2017) 124-133.
    [19] D. Zhu, L. Long, J. Sun, H. Wan, S. Zheng, Highly active and selective catalytic hydrogenation of p-chloronitrobenzene to p-chloroaniline on Pt@Cu/TiO2, Appl. Surf. Sci., 504 (2020) 144329.
    [20] A.B. Dongil, C. Rivera-Cárcamo, L. Pastor-Pérez, A. Sepúlveda-Escribano, P. Reyes, Ir supported over carbon materials for the selective hydrogenation of chloronitrobenzenes, Catalysis Today, 249 (2015) 72-78.
    [21] Z.-J. Shao, L. Zhang, H. Liu, X.-M. Cao, P. Hu, Enhanced interfacial H2 activation for nitrostyrene catalytic hydrogenation over rutile titania-supported gold by coadsorption: a first-principles microkinetic simulation study, ACS Catalysis, 9 (2019) 11288-11301.
    [22] E.H. Boymans, P. Witte, D. Vogt, A study on the selective hydrogenation of nitroaromatics to N-arylhydroxylamines using a supported Pt nanoparticle catalyst, Catalysis Science & Technology, 5 (2015) 176-183.
    [23] Z. Yin, L. Xie, S. Cao, Y. Xiao, G. Chen, Y. Jiang, W. Wei, L. Wu, Ag/Ag2O confined visible-light-driven catalyst for highly efficient selective hydrogenation of nitroarenes in pure water medium at room temperature, Chemical Engineering Journal, 394 (2020) 125036.
    [24] S. Meng, X. Ye, X. Ning, M. Xie, X. Fu, S. Chen, Selective oxidation of aromatic alcohols to aromatic aldehydes by BN/metal sulfide with enhanced photocatalytic activity, Applied Catalysis B: Environmental, 182 (2016) 356-368.
    [25] K.P. McClelland, E.A. Weiss, Selective photocatalytic oxidation of benzyl alcohol to benzaldehyde or C–C coupled products by visible-light-absorbing quantum dots, ACS Applied Energy Materials, 2 (2018) 92-96.
    [26] C. Zheng, G. He, X. Xiao, M. Lu, H. Zhong, X. Zuo, J. Nan, Selective photocatalytic oxidation of benzyl alcohol into benzaldehyde with high selectivity and conversion ratio over Bi4O5Br2 nanoflakes under blue LED irradiation, Applied Catalysis B: Environmental, 205 (2017) 201-210.
    [27] M. Mohammadi, H. Hadadzadeh, M. Kaikhosravi, H. Farrokhpour, J. Shakeri, Selective photocatalytic oxidation of benzyl alcohol at ambient conditions using spray-dried g-C3N4/TiO2 granules, Molecular Catalysis, 490 (2020) 110927.
    [28] Q. Gu, K. Zhang, P. Jiang, Y. Shen, Y. Leng, P. Zhang, P.T. Wai, A dual-templating strategy for the synthesis of Bi2WO6 with oxygen vacancies for enhanced light-driven photocatalytic oxidation alcohol, Molecular Catalysis, 515 (2021) 111932.
    [29] T. Li, S. Zhang, S. Meng, X. Ye, X. Fu, S. Chen, Amino acid-assisted synthesis of In2S3 hierarchical architectures for selective oxidation of aromatic alcohols to aromatic aldehydes, RSC advances, 7 (2017) 6457-6466.
    [30] B. Li, R. Tayebee, E. Esmaeili, M.S. Namaghi, B. Maleki, Selective photocatalytic oxidation of aromatic alcohols to aldehydes with air by magnetic WO3ZnO/Fe3O4. In situ photochemical synthesis of 2-substituted benzimidazoles, RSC advances, 10 (2020) 40725-40738.
    [31] Y. Shiraishi, T. Hirai, Selective organic transformations on titanium oxide-based photocatalysts, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 (2008) 157-170.
    [32] H.L. Tan, F.F. Abdi, Y.H. Ng, Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation, Chemical Society Reviews, 48 (2019) 1255-1271.
    [33] H. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo, A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies, Chinese Journal of Catalysis, 43 (2022) 178-214.
    [34] J. Xiao, X. Liu, L. Pan, C. Shi, X. Zhang, J.-J. Zou, Heterogeneous photocatalytic organic transformation reactions using conjugated polymers-based materials, ACS Catalysis, 10 (2020) 12256-12283.
    [35] D. Friedmann, A. Hakki, H. Kim, W. Choi, D. Bahnemann, Heterogeneous photocatalytic organic synthesis: state-of-the-art and future perspectives, Green Chemistry, 18 (2016) 5391-5411.
    [36] H. Abdullah, N.S. Gultom, H. Shuwanto, W.L. Kebede, D.-H. Kuo, Self-Protonated Ho-Doped Zn(O,S) as a Green Chemical-Conversion Catalyst to Hydrogenate Nitro to Amino Compounds, ACS Appl. Mater. Interfaces, 12 (2020) 43761-43770.
    [37] H. Shuwanto, H. Abdullah, D.-H. Kuo, N.S. Gultom, Surface Active Sites of Y-Doped Zn(O,S) for Chemisorption and Hydrogenation of Azobenzene and Nitroaromatic Compounds under Light via Self-Generated Proton, Appl. Surf. Sci. , (2021) 149508.
    [38] J.-H. Tang, Y. Sun, Visible-light-driven organic transformations integrated with H2 production on semiconductors, Materials Advances, 1 (2020) 2155-2162.
    [39] F. Wang, Q. Li, D. Xu, Recent progress in semiconductor‐based nanocomposite photocatalysts for solar‐to‐chemical energy conversion, Advanced Energy Materials, 7 (2017) 1700529.
    [40] J. Schneider, D.W. Bahnemann, Undesired role of sacrificial reagents in photocatalysis, in ACS Publications, 2013, pp. 3479-3483.
    [41] W. Shang, Y. Li, H. Huang, F. Lai, M.B. Roeffaers, B. Weng, Synergistic redox reaction for value-added organic transformation via dual-functional photocatalytic systems, ACS Catalysis, 11 (2021) 4613-4632.
    [42] Y. Dai, C. Li, Y. Shen, T. Lim, J. Xu, Y. Li, H. Niemantsverdriet, F. Besenbacher, N. Lock, R. Su, Light-tuned selective photosynthesis of azo-and azoxy-aromatics using graphitic C3N4, Nature communications, 9 (2018) 1-7.
    [43] S. Munir, D.D. Dionysiou, S.B. Khan, S.M. Shah, B. Adhikari, A. Shah, Development of photocatalysts for selective and efficient organic transformations, Journal of Photochemistry and Photobiology B: Biology, 148 (2015) 209-222.
    [44] S. Gisbertz, B. Pieber, Heterogeneous photocatalysis in organic synthesis, ChemPhotoChem, 4 (2020) 456-475.
    [45] X. Yang, D. Wang, Photocatalysis: from fundamental principles to materials and applications, ACS Applied Energy Materials, 1 (2018) 6657-6693.
    [46] D. Zhu, Q. Zhou, Action and mechanism of semiconductor photocatalysis on the degradation of organic pollutants in water treatment: A review, Environmental Nanotechnology, Monitoring & Management, 12 (2019) 100255.
    [47] M.M. Rahman, Introductory Chapter: Fundamentals of Semiconductor Photocatalysis, in Concepts of Semiconductor Photocatalysis, IntechOpen, 2019.
    [48] P. Riente, T. Noël, Application of metal oxide semiconductors in light-driven organic transformations, Catalysis Science & Technology, 9 (2019) 5186-5232.
    [49] J. Theerthagiri, S. Chandrasekaran, S. Salla, V. Elakkiya, R. Senthil, P. Nithyadharseni, T. Maiyalagan, K. Micheal, A. Ayeshamariam, M.V. Arasu, Recent developments of metal oxide based heterostructures for photocatalytic applications towards environmental remediation, Journal of Solid State Chemistry, 267 (2018) 35-52.
    [50] M. Cai, X. Wang, J. Xue, Y. Jiang, Y. Wei, Q. Cheng, J. Chen, S. Sun, Improvement of photocatalytic hydrogen evolution of La5Ti2AgS5O7 by flash sintering method, Applied Physics Letters, 119 (2021) 071903.
    [51] C. Kim, S.J. Doh, S.G. Lee, S.J. Lee, H.Y. Kim, Visible-light absorptivity of a zincoxysulfide (ZnOxS1−x) composite semiconductor and its photocatalytic activities for degradation of organic pollutants under visible-light irradiation, Applied Catalysis A: General, 330 (2007) 127-133.
    [52] A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ≤ 650 nm), Journal of the American Chemical Society, 124 (2002) 13547-13553.
    [53] Q. Wang, M. Nakabayashi, T. Hisatomi, S. Sun, S. Akiyama, Z. Wang, Z. Pan, X. Xiao, T. Watanabe, T. Yamada, Oxysulfide photocatalyst for visible-light-driven overall water splitting, Nature Materials, 18 (2019) 827-832.
    [54] Y. Jia, J. Yang, D. Zhao, H. Han, C. Li, A Novel Sr2CuInO3S p-type semiconductor photocatalyst for hydrogen production under visible light irradiation, Journal of energy chemistry, 23 (2014) 420-426.
    [55] N.S. Gultom, H. Abdullah, D.-H. Kuo, Phase transformation of bimetal zinc nickel oxide to oxysulfide photocatalyst with its exceptional performance to evolve hydrogen, Applied Catalysis B: Environmental, 272 (2020) 118985.
    [56] X. Chen, H. Sun, D.-H. Kuo, A.B. Abdeta, O.A. Zelekew, Y. Guo, J. Zhang, Z. Yuan, J. Lin, Spherical nanoflower-like bimetallic (Mo,Ni)(S,O)3-x sulfo-oxide catalysts for efficient hydrogen evolution under visible light, Applied Catalysis B: Environmental, 287 (2021) 119992.
    [57] X. Chen, T. Huang, D.-H. Kuo, H. Sun, P. Li, O.A. Zelekew, A.B. Abdeta, Q. Wu, J. Zhang, Z. Yuan, Material design with the concept of solid solution-type defect engineering in realizing the conversion of an electrocatalyst of NiS2 into a photocatalyst for hydrogen evolution, Applied Catalysis B: Environmental, 298 (2021) 120542.
    [58] H. Abdullah, D.-H. Kuo, Utilization of photocatalytic hydrogen evolved (Zn,Sn)(O,S) nanoparticles to reduce 4-nitrophenol to 4-aminophenol, International Journal of Hydrogen Energy, 44 (2019) 191-201.
    [59] A.L. Pacquette, H. Hagiwara, T. Ishihara, A.A. Gewirth, Fabrication of an oxysulfide of bismuth Bi2O2S and its photocatalytic activity in a Bi2O2S/In2O3 composite, Journal of Photochemistry and Photobiology A: Chemistry, 277 (2014) 27-36.
    [60] G. Zhang, X. Wang, Oxysulfide semiconductors for photocatalytic overall water splitting with visible light, Angewandte Chemie International Edition, 58 (2019) 15580-15582.
    [61] M.S.S. Danish, A. Bhattacharya, D. Stepanova, A. Mikhaylov, M.L. Grilli, M. Khosravy, T. Senjyu, A systematic review of metal oxide applications for energy and environmental sustainability, Metals, 10 (2020) 1604.
    [62] F. Opoku, K.K. Govender, C.G.C.E. van Sittert, P.P. Govender, Recent progress in the development of semiconductor‐based photocatalyst materials for applications in photocatalytic water splitting and degradation of pollutants, Advanced Sustainable Systems, 1 (2017) 1700006.
    [63] S. Shen, J. Chen, L. Cai, F. Ren, L. Guo, A strategy of engineering impurity distribution in metal oxide nanostructures for photoelectrochemical water splitting, Journal of Materiomics, 1 (2015) 134-145.
    [64] K. Afroz, M. Moniruddin, N. Bakranov, S. Kudaibergenov, N. Nuraje, A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials, Journal of Materials Chemistry A, 6 (2018) 21696-21718.
    [65] N. Zhou, V. López-Puente, Q. Wang, L. Polavarapu, I. Pastoriza-Santos, Q.-H. Xu, Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics, RSC Advances, 5 (2015) 29076-29097.
    [66] S. Roy, Photocatalytic Materials for Reduction of Nitroarenes and Nitrates, J. Phys. Chem. C., 124 (2020) 28345-28358.
    [67] G. Di Liberto, L.A. Cipriano, S. Tosoni, G. Pacchioni, Rational Design of Semiconductor Heterojunctions for Photocatalysis, Chemistry–A European Journal, 27 (2021) 13306-13317.
    [68] N.D. Cuong, D.T. Quang, Progress through synergistic effects of heterojunction in nanocatalysts‐Review, Vietnam J. Chem., 58 (2020) 434-463.
    [69] X. He, C. Zhang, Recent advances in structure design for enhancing photocatalysis, Journal of Materials Science, 54 (2019) 8831-8851.
    [70] F. Amano, K. Nogami, M. Tanaka, B. Ohtani, Correlation between surface area and photocatalytic activity for acetaldehyde decomposition over bismuth tungstate particles with a hierarchical structure, Langmuir, 26 (2010) 7174-7180.
    [71] H.M. El-Hosainy, S.M. El-Sheikh, A.A. Ismail, A. Hakki, R. Dillert, H.M. Killa, I.A. Ibrahim, D.W. Bahnemann, Highly selective photocatalytic reduction of o-dinitrobenzene to o-phenylenediamine over non-metal-doped TiO2 under simulated solar light irradiation, Catalysts, 8 (2018) 641.
    [72] R. Mohamed, E. Aazam, Effect of Sn loading on the photocatalytic aniline synthesis activity of TiO2 nanospheres, Journal of alloys and compounds, 595 (2014) 8-13.
    [73] H. She, H. Zhou, L. Li, L. Wang, J. Huang, Q. Wang, Nickel-doped excess oxygen defect titanium dioxide for efficient selective photocatalytic oxidation of benzyl alcohol, ACS Sustainable Chemistry & Engineering, 6 (2018) 11939-11948.
    [74] S. Zhang, W. Huang, X. Fu, X. Zheng, S. Meng, X. Ye, S. Chen, Photocatalytic organic transformations: Simultaneous oxidation of aromatic alcohols and reduction of nitroarenes on CdLa2S4 in one reaction system, Applied Catalysis B: Environmental, 233 (2018) 1-10.
    [75] M. Japa, D. Tantraviwat, W. Phasayavan, A. Nattestad, J. Chen, B. Inceesungvorn, Simple preparation of nitrogen-doped TiO2 and its performance in selective oxidation of benzyl alcohol and benzylamine under visible light, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610 (2021) 125743.
    [76] C. Lu, Z. Yin, C. Sun, C. Chen, F. Wang, Photocatalytic reduction of nitroaromatics into anilines using CeO2-TiO2 nanocomposite, Mol. Catal., 513 (2021) 111775.
    [77] S. Higashimoto, Y. Nakai, M. Azuma, M. Takahashi, Y. Sakata, One-pot synthesis of imine from benzyl alcohol and nitrobenzene on visible-light responsive CdS–TiO2 photocatalysts, RSC Advances, 4 (2014) 37662-37668.
    [78] M.-Y. Qi, Q. Lin, Z.-R. Tang, Y.-J. Xu, Photoredox coupling of benzyl alcohol oxidation with CO2 reduction over CdS/TiO2 heterostructure under visible light irradiation, Applied Catalysis B: Environmental, 307 (2022) 121158.
    [79] L. Zhang, X. He, X. Xu, C. Liu, Y. Duan, L. Hou, Q. Zhou, C. Ma, X. Yang, R. Liu, Highly active TiO2/g-C3N4/G photocatalyst with extended spectral response towards selective reduction of nitrobenzene, Applied Catalysis B: Environmental, 203 (2017) 1-8.
    [80] F.T. Bekena, H. Abdullah, D.-H. Kuo, M.A. Zeleke, Photocatalytic reduction of 4-nitrophenol using effective hole scavenger over novel Mg-doped Zn(O,S) nanoparticles, Journal of Industrial and Engineering Chemistry, 78 (2019) 116-124.
    [81] H. Abdullah, N.S. Gultom, D.-H. Kuo, A simple one-pot synthesis of a Zn(O,S)/Ga2O3 nanocomposite photocatalyst for hydrogen production and 4-nitrophenol reduction, New J. Chem., 41 (2017) 12397-12406.
    [82] P. Ramacharyulu, S.J. Abbas, S.R. Sahoo, S.-C. Ke, Mechanistic insights into 4-nitrophenol degradation and benzyl alcohol oxidation pathways over MgO/g-C3N4 model catalyst systems, Catalysis Science & Technology, 8 (2018) 2825-2834.
    [83] A. Kumar, B. Paul, R. Boukherroub, S.L. Jain, Highly efficient conversion of the nitroarenes to amines at the interface of a ternary hybrid containing silver nanoparticles doped reduced graphene oxide/graphitic carbon nitride under visible light, J. Hazard. Mater., 387 (2020) 121700.
    [84] X. Dai, M. Xie, S. Meng, X. Fu, S. Chen, Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation, Applied Catalysis B: Environmental, 158 (2014) 382-390.
    [85] S. Speakman, Basics of X-ray Diffraction, Massachusetts Institute of Technology, (2016).
    [86] G.S. Bumbrah, R.M. Sharma, Raman spectroscopy–Basic principle, instrumentation and selected applications for the characterization of drugs of abuse, Egyptian Journal of Forensic Sciences, 6 (2016) 209-215.
    [87] R.R. Jones, D.C. Hooper, L. Zhang, D. Wolverson, V.K. Valev, Raman techniques: fundamentals and frontiers, Nanoscale research letters, 14 (2019) 1-34.
    [88] K. Akhtar, S.A. Khan, S.B. Khan, A.M. Asiri, Scanning electron microscopy: principle and applications in nanomaterials characterization, in: Handbook of materials characterization, Springer, 2018, pp. 113-145.
    [89] M. Kannan, Scanning electron microscopy: Principle, components and applications, A textbook on fundamentals and applications of nanotechnology, (2018) 81-92.
    [90] F.L. Deepak, A. Mayoral, R. Arenal, Advanced transmission electron microscopy: Applications to nanomaterials, Springer, 2015.
    [91] L.E. Franken, K. Grünewald, E.J. Boekema, M.C. Stuart, A Technical Introduction to Transmission Electron Microscopy for Soft‐Matter: Imaging, Possibilities, Choices, and Technical Developments, Small, 16 (2020) 1906198.
    [92] F.A. Stevie, C.L. Donley, Introduction to x-ray photoelectron spectroscopy, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 38 (2020) 063204.
    [93] M. Drescher, EPR spectroscopy: applications in chemistry and biology, Springer, 2012.
    [94] E. Morra, E. Giamello, M. Chiesa, EPR approaches to heterogeneous catalysis. The chemistry of titanium in heterogeneous catalysts and photocatalysts, Journal of Magnetic Resonance, 280 (2017) 89-102.
    [95] F. Ambroz, T.J. Macdonald, V. Martis, I.P. Parkin, Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs, Small Methods, 2 (2018) 1800173.
    [96] J. Villarroel-Rocha, D. Barrera, K. Sapag, Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination, Microporous and Mesoporous Materials, 200 (2014) 68-78.
    [97] P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra, in, ACS Publications, 2018, pp. 6814-6817.
    [98] P. Morozzi, B. Ballarin, S. Arcozzi, E. Brattich, F. Lucarelli, S. Nava, P.J. Gómez-Cascales, J. Orza, L. Tositti, Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV–Vis DRS), a rapid and non-destructive analytical tool for the identification of Saharan dust events in particulate matter filters, Atmospheric Environment, 252 (2021) 118297.
    [99] D.J. Vogel, D.S. Kilin, First-principles treatment of photoluminescence in semiconductors, The Journal of Physical Chemistry C, 119 (2015) 27954-27964.
    [100] J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Solar Energy Materials and Solar Cells, 90 (2006) 1773-1787.
    [101] S. Wood, D. O'Connor, C.W. Jones, J.D. Claverley, J.C. Blakesley, C. Giusca, F.A. Castro, Transient photocurrent and photovoltage mapping for characterisation of defects in organic photovoltaics, Solar Energy Materials and Solar Cells, 161 (2017) 89-95.
    [102] J.M. Belanger, J.J. Paré, M. Sigouin, High performance liquid chromatography (HPLC): principles and applications, in: Techniques and Instrumentation in Analytical Chemistry, Elsevier, 1997, pp. 37-59.
    [103] J. Lozano-Sánchez, I. Borrás-Linares, A. Sass-Kiss, A. Segura-Carretero, Chapter 13—Chromatographic Technique: High-Performance Liquid Chromatography (HPLC) In: Sun D.-W., editor. Modern Techniques for Food Authentication, in, Academic Press Cambridge, MA, USA:, 2018.
    [104] F. Santos, M. Galceran, Modern developments in gas chromatography–mass spectrometry-based environmental analysis, Journal of Chromatography A, 1000 (2003) 125-151.
    [105] J. Sneddon, S. Masuram, J. Richert, Gas chromatography‐mass spectrometry‐basic principles, instrumentation and selected applications for detection of organic compounds, Analytical letters, 40 (2007) 1003-1012.
    [106] A.R. Bredar, A.L. Chown, A.R. Burton, B.H. Farnum, Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications, ACS Applied Energy Materials, 3 (2020) 66-98.
    [107] J. Ângelo, P. Magalhães, L. Andrade, A. Mendes, Characterization of TiO2-based semiconductors for photocatalysis by electrochemical impedance spectroscopy, Applied Surface Science, 387 (2016) 183-189.
    [108] A. Hankin, F.E. Bedoya-Lora, J.C. Alexander, A. Regoutz, G.H. Kelsall, Flat band potential determination: avoiding the pitfalls, Journal of Materials Chemistry A, 7 (2019) 26162-26176.
    [109] K. Sivula, Mott–Schottky Analysis of Photoelectrodes: Sanity Checks Are Needed, in, ACS Publications, 2021, pp. 2549-2551.
    [110] M. Aqeel, M. Ikram, A. Asghar, A. Haider, A. Ul-Hamid, M. Naz, M. Imran, S. Ali, Synthesis of capped Cr-doped ZnS nanoparticles with improved bactericidal and catalytic properties to treat polluted water, Appl. Nanosci., (2020) 1-11.
    [111] N. Mintcheva, G. Gicheva, M. Panayotova, W. Wunderlich, A.A. Kuchmizhak, S.A. Kulinich, Preparation and photocatalytic properties of CdS and ZnS nanomaterials derived from metal xanthate, Materials, 12 (2019) 3313.
    [112] M. Jothibas, S.J. Jeyakumar, C. Manoharan, I.K. Punithavathy, P. Praveen, J.P. Richard, Structural and optical properties of zinc sulphide nanoparticles synthesized via solid state reaction method, J. Mater. Sci.: Mater. Electron., 28 (2017) 1889-1894.
    [113] A. Chelouche, T. Touam, M. Tazerout, F. Boudjouan, D. Djouadi, A. Doghmane, Low cerium doping investigation on structural and photoluminescence properties of sol-gel ZnO thin films, J. Lumin., 181 (2017) 448-454.
    [114] G. Flores-Carrasco, M. Rodríguez-Peña, A. Urbieta, P. Fernández, M.E. Rabanal, ZnO Nanoparticles with Controllable Ce Content for Efficient Photocatalytic Degradation of MB Synthesized by the Polyol Method, Catalysts, 11 (2021) 71.
    [115] B. Poornaprakash, U. Chalapathi, S.P. Vattikuti, M.C. Sekhar, B.P. Reddy, P. Poojitha, M.S.P. Reddy, Y. Suh, S.-H. Park, Enhanced fluorescence efficiency and photocatalytic activity of ZnS quantum dots through Ga doping, Ceram. Int., 45 (2019) 2289-2294.
    [116] E. Della Gaspera, J. Griggs, T. Ahmed, S. Walia, E.L. Mayes, A. Calzolari, A. Catellani, J. van Embden, Augmented band gap tunability in indium-doped zinc sulfide nanocrystals, Nanoscale, 11 (2019) 3154-3163.
    [117] L.W. Duresa, D.-H. Kuo, K.E. Ahmed, M.A. Zeleke, H. Abdullah, Highly enhanced photocatalytic Cr (vi) reduction using In-doped Zn(O,S) nanoparticles, New J. Chem., 43 (2019) 8746-8754.
    [118] S. Horzum, F. Iyikanat, R.T. Senger, C. Çelebi, M. Sbeta, A. Yildiz, T. Serin, Monitoring the characteristic properties of Ga-doped ZnO by Raman spectroscopy and atomic scale calculations, J. Mol. Struct. , 1180 (2019) 505-511.
    [119] L. Si, K. Lv, D. Tang, C. Yang, Facile preparation of Ti3+ self-doped TiO2 nanosheets with dominant {0 0 1} facets using zinc powder as reductant, Journal of alloys and compounds, 601 (2014) 88-93.
    [120] D.-H. Lee, K. Kim, Y.S. Chun, S. Kim, S.Y. Lee, Substitution mechanism of Ga for Zn site depending on deposition temperature for transparent conducting oxides, Curr. Appl. Phys., 12 (2012) 1586-1590.
    [121] S.-S. Li, Y.-K. Su, Improvement of the performance in Cr-doped ZnO memory devices via control of oxygen defects, RSC Adv., 9 (2019) 2941-2947.
    [122] Y.-C. Liang, C.-C. Wang, Surface crystal feature-dependent photoactivity of ZnO–ZnS composite rods via hydrothermal sulfidation, RSC Adv., 8 (2018) 5063-5070.
    [123] N. Mintcheva, G. Gicheva, M. Panayotova, S.A. Kulinich, Room-Temperature Synthesis of ZnS Nanoparticles Using Zinc Xanthates as Molecular Precursors, Materials, 13 (2020) 171.
    [124] R. Khokhra, B. Bharti, H.-N. Lee, R. Kumar, Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method, Sci. Rep., 7 (2017) 1-14.
    [125] M. Shao, J. Liu, W. Ding, J. Wang, F. Dong, J. Zhang, Oxygen vacancy engineering of self-doped SnO2−x nanocrystals for ultrasensitive NO2 detection, J. Mater. Chem. C, 8 (2020) 487-494.
    [126] X. Wang, X. Wang, Q. Di, H. Zhao, B. Liang, J. Yang, Mutual effects of fluorine dopant and oxygen vacancies on structural and luminescence characteristics of F doped SnO2 nanoparticles, Materials, 10 (2017) 1398.
    [127] B. Liu, X. Hu, X. Li, Y. Li, C. Chen, K.-h. Lam, Preparation of ZnS@ In2S3Core@ shell Composite for Enhanced Photocatalytic Degradation of Gaseous o-Dichlorobenzene under Visible Light, Sci. Rep., 7 (2017) 1-9.
    [128] J. Selvaraj, A. Mahesh, V. Asokan, V. Baskaralingam, A. Dhayalan, T. Paramasivam, Phosphine-free, highly emissive, water-soluble Mn: ZnSe/ZnS core–shell nanorods: synthesis, characterization, and in vitro bioimaging of HEK293 and HeLa cells, ACS Appl. Nano Mater., 1 (2017) 371-383.
    [129] Y. Zhong, Y. Shao, B. Huang, X. Hao, Y. Wu, Combining ZnS with WS2 nanosheets to fabricate a broad-spectrum composite photocatalyst for hydrogen evolution, New J. Chem., 41 (2017) 12451-12458.
    [130] C.I.M. Rodríguez, M.Á.L. Álvarez, J.d.J.F. Rivera, G.G.C. Arízaga, C.R. Michel, α-Ga2O3 as a Photocatalyst in the Degradation of Malachite Green, ECS J. Solid State Sci. Technol., 8 (2019) Q3180.
    [131] P.T. Cao, T.T.A. Tuan, D.-H. Kuo, W.-C. Ke, T.V.S.N. Thach, Reactively Sputtered Sb-GaN Films and its Hetero-Junction Diode: The Exploration of the n-to-p Transition, Coatings, 10 (2020) 210.
    [132] M. Gökçe, G. Burgaz, A.G. Gökçe, Cerium doped glasses containing reducing agent for enhanced luminescence, J. Lumin., 222 (2020) 117175.
    [133] Z. Wang, Y. Huang, H. Luo, Z. Gong, K. Zhang, N. Li, W. Wu, Denitrification performance of rare earth tailings-based catalysts, Green Process. Synth., 8 (2019) 865-872.
    [134] X. Yang, H. Wu, S. Wang, F. Cheng, C. Feng, K. Liu, Synthesis and electrochemical properties of CeVO4/Fe3O4 as a novel anode material for lithium-ion batteries, Ionics, 26 (2020) 4859-4867.
    [135] M. Faisal, A.A. Ismail, A.A. Ibrahim, H. Bouzid, S.A. Al-Sayari, Highly efficient photocatalyst based on Ce doped ZnO nanorods: Controllable synthesis and enhanced photocatalytic activity, Chem. Eng. J., 229 (2013) 225-233.
    [136] C.-J. Chang, C.-Y. Lin, M.-H. Hsu, Enhanced photocatalytic activity of Ce-doped ZnO nanorods under UV and visible light, J. Taiwan Inst. Chem. Engrs. , 45 (2014) 1954-1963.
    [137] Y. Ji, T. Fan, Y. Luo, First-principles study on the mechanism of photocatalytic reduction of nitrobenzene on the rutile TiO2 (110) surface, Phys. Chem. Chem. Phys., 22 (2020) 1187-1193.
    [138] J. Song, Z.-F. Huang, L. Pan, K. Li, X. Zhang, L. Wang, J.-J. Zou, Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions, Appl. Catal. B-Environ., 227 (2018) 386-408.
    [139] I. Ahmad, M.S. Akhtar, M.F. Manzoor, M. Wajid, M. Noman, E. Ahmed, M. Ahmad, W.Q. Khan, A.M. Rana, Synthesis of yttrium and cerium doped ZnO nanoparticles as highly inexpensive and stable photocatalysts for hydrogen evolution, J. Rare Earths, 39 (2021) 440-445.
    [140] M. Kimi, L. Yuliati, M. Shamsuddin, Preparation of high activity Ga and Cu doped ZnS by hydrothermal method for hydrogen production under visible light irradiation, J. Nanomater., 2015 (2015).
    [141] I. Tateishi, M. Furukawa, H. Katsumata, S. Kaneco, The Effect of Cu and Ga Doped ZnIn2S4 under Visible Light on the High Generation of H2 Production, ChemEngineering, 3 (2019) 79.
    [142] H. Abdullah, N.S. Gultom, D.-H. Kuo, A.D. Saragih, Cobalt-doped Zn(O,S)/Ga2O3 nanoheterojunction composites for enhanced hydrogen production, New J. Chem. , 42 (2018) 9626-9634.
    [143] N.S. Gultom, H. Abdullah, D.-H. Kuo, Facile synthesis of cobalt-doped (Zn, Ni)(O, S) as an efficient photocatalyst for hydrogen production, J. Energy Inst., 92 (2019) 1428-1439.
    [144] C.-J. Chang, K.-L. Huang, J.-K. Chen, K.-W. Chu, M.-H. Hsu, Improved photocatalytic hydrogen production of ZnO/ZnS based photocatalysts by Ce doping, J. Taiwan Inst. Chem. Engrs., 55 (2015) 82-89.
    [145] X. Zou, M. Kang, H. Wang, C. Huang, C. Shen, Y. Chu, Rapid and sensitive on-line monitoring 6 different kinds of volatile organic compounds in aqueous samples by spray inlet proton transfer reaction mass spectrometry (SI-PTR-MS), Chemosphere, 177 (2017) 217-223.
    [146] A. Korban, S. Charapitsa, R. Čabala, S. Lidia, S. Sytova, The perspectives of ethanol usage as an internal standard for the quantification of volatile compounds in alcoholic products by GC‐MS, J Mass Spectrom., 55 (2020) e4493.
    [147] T. Sheng, Y.-J. Qi, X. Lin, P. Hu, S.-G. Sun, W.-F. Lin, Insights into the mechanism of nitrobenzene reduction to aniline over Pt catalyst and the significance of the adsorption of phenyl group on kinetics, Chem. Eng. J., 293 (2016) 337-344.
    [148] X. Pu, B. Zhang, Y. Su, Heterogeneous photocatalysis in microreactors for efficient reduction of nitrobenzene to aniline: mechanisms and energy efficiency, Chem Eng Technol 42 (2019) 2146-2153.
    [149] L. Pei, J. Wang, C. Fan, H. Ge, E.R. Waclawik, H. Tan, M. Liu, X. Gu, Z. Zheng, The key role of photoisomerisation for the highly selective photocatalytic hydrogenation of azobenzene to hydrazobenzene over NaNbO3 fibre photocatalyst, J. Photochem Photobiol A Chem., 400 (2020) 112655.
    [150] S.A. Rawool, K.K. Yadav, V. Polshettiwar, Defective TiO2 for photocatalytic CO2 conversion to fuels and chemicals, Chem. Sci., 12 (2021) 4267-4299.
    [151] G. Sisay, H. Abdullah, D.-H. Kuo, W. Lakew, H. Shuwanto, S. Fentie, Zn-Ce-Ga trimetal oxysulfide as a dual-functional catalyst: Hydrogen evolution and hydrogenation reactions in a mild condition, Appl. Surf. Sci., (2021) 150383.
    [152] X. Zhou, Y. Yang, J. Wang, W. Ren, S. Liu, C. Zheng, X. Gao, Enhancing nitrobenzene reduction to azoxybenzene by regulating the O-vacancy defects over rationally tailored CeO2 nanocrystals, Appl. Surf. Sci., 572 (2022) 151343.
    [153] U. Caudillo-Flores, M.J. Muñoz-Batista, R. Luque, M. Fernández-García, A. Kubacka, g-C3N4/TiO2 composite catalysts for the photo-oxidation of toluene: Chemical and charge handling effects, Chem. Eng. J., 378 (2019) 122228.
    [154] O. Elbanna, M. Fujitsuka, T. Majima, g-C3N4/TiO2 mesocrystals composite for H2 evolution under visible-light irradiation and its charge carrier dynamics, ACS Appl. Mater. Interfaces, 9 (2017) 34844-34854.
    [155] L. Kong, X. Zhang, C. Wang, J. Xu, X. Du, L. Li, Ti3+ defect mediated g-C3N4/TiO2 Z-scheme system for enhanced photocatalytic redox performance, Appl. Surf. Sci., 448 (2018) 288-296.
    [156] Z. Li, S. Wang, J. Wu, W. Zhou, Recent progress in defective TiO2 photocatalysts for energy and environmental applications, Renew. Sust. Energ. Rev., 156 (2022) 111980.
    [157] M. Alenizi, R. Kumar, M. Aslam, F. Alseroury, M. Barakat, Construction of a ternary g-C3N4/TiO2@ polyaniline nanocomposite for the enhanced photocatalytic activity under solar light, Sci. Rep., 9 (2019) 1-8.
    [158] T. Zhao, Z. Xing, Z. Xiu, Z. Li, S. Yang, Q. Zhu, W. Zhou, Surface defect and rational design of TiO2− x nanobelts/g-C3N4 nanosheets/CdS quantum dots hierarchical structure for enhanced visible-light-driven photocatalysis, Int. J. Hydrog. Energy, 44 (2019) 1586-1596.
    [159] J. Ni, W. Wang, D. Liu, Q. Zhu, J. Jia, J. Tian, Z. Li, X. Wang, Z. Xing, Oxygen vacancy-mediated sandwich-structural TiO2−x/ultrathin g-C3N4/TiO2−x direct Z-scheme heterojunction visible-light-driven photocatalyst for efficient removal of high toxic tetracycline antibiotics, J. Hazard. Mater., 408 (2021) 124432.
    [160] P. Ning, H. Chen, J. Pan, J. Liang, L. Qin, D. Chen, Y. Huang, Surface defect-rich g-C3N4/TiO2 Z-scheme heterojunction for efficient photocatalytic antibiotic removal: rational regulation of free radicals and photocatalytic mechanism, Catal. Sci. Technol. , 10 (2020) 8295-8304.
    [161] X. Qu, C. Chen, J. Lin, W. Qiang, L. Zhang, D. Sun, Engineered defect-rich TiO2/g-C3N4 heterojunction: A visible light-driven photocatalyst for efficient degradation of phenolic wastewater, Chemosphere, 286 (2022) 131696.
    [162] X. Liu, Z. Xing, H. Zhang, W. Wang, Y. Zhang, Z. Li, X. Wu, X. Yu, W. Zhou, Fabrication of 3 D Mesoporous Black TiO2/MoS2/TiO2 Nanosheets for Visible‐Light‐Driven Photocatalysis, ChemSusChem, 9 (2016) 1118-1124.
    [163] J. Zhou, M. Zhang, Y. Zhu, Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method, Phys. Chem. Chem. Phys., 17 (2015) 3647-3652.
    [164] J. Cai, K. Lv, J. Sun, K. Deng, Ti powder-assisted synthesis of Ti3+ self-doped TiO2 nanosheets with enhanced visible-light photoactivity, RSC Adv., 4 (2014) 19588-19593.
    [165] L. Si, K. Lv, D. Tang, C. Yang, Facile preparation of Ti3+ self-doped TiO2 nanosheets with dominant {0 0 1} facets using zinc powder as reductant, J. Alloys Compd., 601 (2014) 88-93.
    [166] S. Gong, Z. Jiang, S. Zhu, J. Fan, Q. Xu, Y. Min, The synthesis of graphene-TiO2/g-C3N4 super-thin heterojunctions with enhanced visible-light photocatalytic activities, J. Nanoparticle Res., 20 (2018) 1-13.
    [167] B. Bharti, S. Kumar, H.-N. Lee, R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment, Sci. Rep., 6 (2016) 1-12.
    [168] S. Praserthdam, M. Rittiruam, K. Maungthong, T. Saelee, S. Somdee, P. Praserthdam, Performance controlled via surface oxygen-vacancy in Ti-based oxide catalyst during methyl oleate epoxidation, Sci. Rep., 10 (2020) 1-10.
    [169] C. Wang, Y. Zhao, H. Xu, Y. Li, Y. Wei, J. Liu, Z. Zhao, Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O, Appl. Catal. B: Environ., 263 (2020) 118314.
    [170] M. Alcudia-Ramos, M. Fuentez-Torres, F. Ortiz-Chi, C. Espinosa-González, N. Hernández‐Como, D. García-Zaleta, M. Kesarla, J. Torres-Torres, V. Collins-Martínez, S. Godavarthi, Fabrication of g-C3N4/TiO2 heterojunction composite for enhanced photocatalytic hydrogen production, Ceram. Int., 46 (2020) 38-45.
    [171] P. Wang, Z. Guan, Q. Li, J. Yang, Efficient visible-light-driven photocatalytic hydrogen production from water by using Eosin Y-sensitized novel g-C3N4/Pt/GO composites, J. Mater. Sci., 53 (2018) 774-786.
    [172] K. Li, B. Peng, J. Jin, L. Zan, T. Peng, Carbon nitride nanodots decorated brookite TiO2 quasi nanocubes for enhanced activity and selectivity of visible-light-driven CO2 reduction, Appl. Catal. B: Environ., 203 (2017) 910-916.
    [173] C. Wu, S. Xue, Z. Qin, M. Nazari, G. Yang, S. Yue, T. Tong, H. Ghasemi, F.C.R. Hernandez, S. Xue, Making g-C3N4 ultra-thin nanosheets active for photocatalytic overall water splitting, Appl. Catal. B: Environ., 282 (2021) 119557.
    [174] D. Ruan, S. Kim, M. Fujitsuka, T. Majima, Defects rich g-C3N4 with mesoporous structure for efficient photocatalytic H2 production under visible light irradiation, Appl. Catal. B: Environ., 238 (2018) 638-646.
    [175] C. Feng, L. Tang, Y. Deng, J. Wang, J. Luo, Y. Liu, X. Ouyang, H. Yang, J. Yu, J. Wang, Synthesis of leaf‐vein‐like g‐C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution, Adv. Funct. Mater., 30 (2020) 2001922.
    [176] C. Feng, Z.P. Wu, K.W. Huang, J. Ye, H. Zhang, Surface Modification of 2D Photocatalysts for Solar Energy Conversion, Adv. Mater, (2022) 2200180.
    [177] N. Li, M. Huang, J. Zhou, M. Liu, D. Jing, MgO and Au nanoparticle Co-modified g-C3N4 photocatalysts for enhanced photoreduction of CO2 with H2O, Chinese J. Catal., 42 (2021) 781-794.
    [178] E. Vesali-Kermani, A. Habibi-Yangjeh, S. Ghosh, Visible-light-induced nitrogen photofixation ability of g-C3N4 nanosheets decorated with MgO nanoparticles, J. Ind. Eng. Chem., 84 (2020) 185-195.
    [179] Y. Mordekovitz, Y. Shoval, N. Froumin, S. Hayun, Effect of Structure and Composition of Non-Stoichiometry Magnesium Aluminate Spinel on Water Adsorption, Materials, 13 (2020) 3195.
    [180] D. Cheng, Y. Li, L. Yang, S. Luo, L. Yang, X. Luo, Y. Luo, T. Li, J. Gao, D.D. Dionysiou, One–step reductive synthesis of Ti3+ self–doped elongated anatase TiO2 nanowires combined with reduced graphene oxide for adsorbing and degrading waste engine oil, J. Hazard. Mater., 378 (2019) 120752.
    [181] W. Fang, M. Xing, J. Zhang, A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment, Appl. Catal. B: Environ., 160 (2014) 240-246.
    [182] V. Hiremath, R. Shavi, J.G. Seo, Controlled oxidation state of Ti in MgO-TiO2 composite for CO2 capture, Chem. Eng. J., 308 (2017) 177-183.
    [183] M. Anpo, G. Costentin, E. Giamello, H. Lauron-Pernot, Z. Sojka, Characterisation and reactivity of oxygen species at the surface of metal oxides, J. Catal., 393 (2021) 259-280.
    [184] A.M. Volodin, V.I. Avdeev, S.E. Malykhin, A.F. Bedilo, EPR and DFT study of the ethylene reaction with O− radicals on the surface of nanocrystalline MgO, Res. Chem. Intermed., 43 (2017) 1047-1061.
    [185] A.O. Oluwole, O.S. Olatunji, Photocatalytic degradation of tetracycline in aqueous systems under visible light irridiation using needle-like SnO2 nanoparticles anchored on exfoliated g-C3N4, Environ. Sci. Eur., 34 (2022) 1-14.
    [186] H. Wang, W. He, G. Jiang, Y. Zhang, Y. Sun, F. Dong, In situ DRIFT investigation on the photocatalytic NO oxidation mechanism with thermally exfoliated porous g-C3N4 nanosheets, RSC Adv., 7 (2017) 19280-19287.
    [187] K. Li, Z. Huang, X. Zeng, B. Huang, S. Gao, J. Lu, Synergetic effect of Ti3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO2/g-C3N4 heterojunctions, ACS Appl. Mater. Interfaces, 9 (2017) 11577-11586.
    [188] S. Tan, Z. Xing, J. Zhang, Z. Li, X. Wu, J. Cui, J. Kuang, Q. Zhu, W. Zhou, Ti3+-TiO2/g-C3N4 mesostructured nanosheets heterojunctions as efficient visible-light-driven photocatalysts, J. Catal., 357 (2018) 90-99.
    [189] L. Shen, Z. Xing, J. Zou, Z. Li, X. Wu, Y. Zhang, Q. Zhu, S. Yang, W. Zhou, Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions with efficient visible-light-driven photocatalytic performance, Sci. Rep., 7 (2017) 1-11.
    [190] J. Patzsch, B. Berg, J.Z. Bloh, Kinetics and optimization of the photocatalytic reduction of nitrobenzene, Front. Chem., 7 (2019) 289.
    [191] R. Mohamed, Preparation of aniline from photocatalytic reduction of nitrobenzene using Pt/Nd2O3 nanocomposite, J. Alloys Compd., 648 (2015) 711-718.
    [192] S.J. Hong, S. Lee, J.S. Jang, J.S. Lee, Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation, Energy Environ. Sci., 4 (2011) 1781-1787.
    [193] Y. Shi, H. Wang, Z. Wang, T. Wu, Y. Song, B. Guo, L. Wu, Pt decorated hierarchical Sb2WO6 microspheres as a surface functionalized photocatalyst for the visible-light-driven reduction of nitrobenzene to aniline, J. Mater. Chem. A, 8 (2020) 18755-18766.
    [194] F. Wei, Y. Liu, H. Zhao, X. Ren, J. Liu, T. Hasan, L. Chen, Y. Li, B.-L. Su, Oxygen self-doped g-C3N4 with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance, Nanoscale, 10 (2018) 4515-4522.
    [195] J. Bandara, C. Hadapangoda, W. Jayasekera, TiO2/MgO composite photocatalyst: the role of MgO in photoinduced charge carrier separation, Appl. Catal. B: Environ., 50 (2004) 83-88.
    [196] M. Mousavi, A. Habibi-Yangjeh, M. Abitorabi, Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation, J. Colloid Interface Sci. , 480 (2016) 218-231.
    [197] J. Madona, C. Sridevi, Surfactant assisted hydrothermal synthesis of MgO/g-C3N4 heterojunction nanocomposite for enhanced solar photocatalysis and antimicrobial activities, Inorg. Chem. Commun., 138 (2022) 109265.
    [198] M. Manzanares, C. Fàbrega, J.O. Ossó, L.F. Vega, T. Andreu, J.R. Morante, Engineering the TiO2 outermost layers using magnesium for carbon dioxide photoreduction, Appl. Catal. B: Environ., 150 (2014) 57-62.
    [199] F. Bekena, D.-H. Kuo, 10 nm sized visible light TiO2 photocatalyst in the presence of MgO for degradation of methylene blue, Mater. Sci. Semicond. Process., 116 (2020) 105152.
    [200] X. Feng, F. Pan, H. Zhao, W. Deng, P. Zhang, H.-C. Zhou, Y. Li, Atomic layer deposition enabled MgO surface coating on porous TiO2 for improved CO2 photoreduction, Appl. Catal. B: Environ., 238 (2018) 274-283.
    [201] N.S. Gultom, H. Abdullah, D.-H. Kuo, Phase transformation of bimetal zinc nickel oxide to oxysulfide photocatalyst with its exceptional performance to evolve hydrogen, Appl. Catal. B-Environ., 272 (2020) 118985.
    [202] H. Abdullah, N.S. Gultom, D.-H. Kuo, Synthesis and characterization of La-doped Zn(O,S) photocatalyst for green chemical detoxification of 4-nitrophenol, J. Hazard. Mater., 363 (2019) 109-118.
    [203] B. Pal, B. Pal, Tuning the optical and photocatalytic properties of anisotropic ZnS nanostructures for the selective reduction of nitroaromatics, Chem. Eng. J., 263 (2015) 200-208.
    [204] Z. Zand, F. Kazemi, S. Hosseini, Development of chemoselective photoreduction of nitro compounds under solar light and blue LED irradiation, Tetrahedron Lett., 55 (2014) 338-341.
    [205] M.K. Aulakh, B. Pal, Influence of co-catalyst amount/size for selective hydrogenation of 1, 3-dinitrobenzene over Au-mTiO2 nanocomposites under visible light, Adv. Powder Technol., 30 (2019) 1329-1337.
    [206] J. Kaur, R. Singh, B. Pal, Influence of coinage and platinum group metal co-catalysis for the photocatalytic reduction of m-dinitrobenzene by P25 and rutile TiO2, J. Mol. Catal. A Chem., 397 (2015) 99-105.
    [207] C.M. Zvinowanda, J.O. Okonkwo, R.C. Gurira, Improved derivatisation methods for the determination of free cyanide and cyanate in mine effluent, J. Hazard. Mater., 158 (2008) 196-201.
    [208] C. Ciou, C. Liang, 1, 3-Dinitrobenzene reductive degradation by alkaline ascorbic acid–Reaction mechanisms, degradation pathways and reagent optimization, Chemosphere, 166 (2017) 482-488.
    [209] J. Kaur, B. Pal, 100% selective yield of m-nitroaniline by rutile TiO2 and m-phenylenediamine by P25-TiO2 during m-dinitrobenzene photoreduction, Catal. Commun., 53 (2014) 25-28.
    [210] C. Lorpaiboon, W. Lorpaiboon, M. Dangkulwanich, A membraneless gas-trapping device for cyanide detection and quantification, Anal. Methods, 12 (2020) 2009-2015.
    [211] C.B. Anucha, I. Altin, E. Bacaksiz, V.N. Stathopoulos, Titanium Dioxide (TiO₂)-Based Photocatalyst Materials Activity Enhancement for Contaminants of Emerging Concern (CECs) Degradation: In the Light of Modification Strategies, Chemical Engineering Journal Advances, (2022) 100262.
    [212] P. Mazierski, A. Mikolajczyk, B. Bajorowicz, A. Malankowska, A. Zaleska-Medynska, J. Nadolna, The role of lanthanides in TiO2-based photocatalysis: A review, Applied Catalysis B: Environmental, 233 (2018) 301-317.
    [213] S.O.-B. Oppong, F. Opoku, P.P. Govender, Tuning the electronic and structural properties of Gd-TiO2-GO nanocomposites for enhancing photodegradation of IC dye: The role of Gd3+ ion, Applied Catalysis B: Environmental, 243 (2019) 106-120.
    [214] T. Gupta, J. Cho, J. Prakash, Hydrothermal synthesis of TiO2 nanorods: formation chemistry, growth mechanism, and tailoring of surface properties for photocatalytic activities, Materials Today Chemistry, 20 (2021) 100428.
    [215] L. Sun, C. Liu, J. Li, Y. Zhou, H. Wang, P. Huo, C. Ma, Y. Yan, Fast electron transfer and enhanced visible light photocatalytic activity by using poly-o-phenylenediamine modified AgCl/g-C3N4 nanosheets, Chinese Journal of Catalysis, 40 (2019) 80-94.
    [216] C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang, W. Wang, Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD, Scientific reports, 7 (2017) 1-12.
    [217] S. Jadoun, U. Riaz, J. Yáñez, N.P.S. Chauhan, Synthesis, characterization and potential applications of Poly (o-phenylenediamine) based copolymers and nanocomposites: a comprehensive review, European Polymer Journal, 156 (2021) 110600.
    [218] N. Nithyaa, N.V. Jaya, Structural, optical, and magnetic properties of Gd-doped TiO2 nanoparticles, Journal of Superconductivity and Novel Magnetism, 31 (2018) 4117-4126.
    [219] T. ul Haq, S.A. Mansour, A. Munir, Y. Haik, Gold‐supported gadolinium doped CoB amorphous sheet: a new benchmark electrocatalyst for water oxidation with high turnover frequency, Advanced Functional Materials, 30 (2020) 1910309.
    [220] M. Li, Y. Wang, Y. Zheng, G. Fu, D. Sun, Y. Li, Y. Tang, T. Ma, Gadolinium‐induced valence structure engineering for enhanced oxygen electrocatalysis, Advanced Energy Materials, 10 (2020) 1903833.
    [221] M. Wang, X. Xu, L. Lin, D. He, Gd–La codoped TiO2 nanoparticles as solar photocatalysts, Progress in Natural Science: Materials International, 25 (2015) 6-11.
    [222] T. Sun, Z.-J. Li, X. Yang, S. Wang, Y.-H. Zhu, X.-B. Zhang, Imine-rich poly (o-phenylenediamine) as high-capacity trifunctional organic electrode for alkali-ion batteries, CCS Chemistry, 1 (2019) 365-372.
    [223] X. Zhang, G. Li, J. Wang, J. Chu, F. Wang, Z. Hu, Z. Song, Revisiting the Structure and Electrochemical Performance of Poly (o-phenylenediamine) as an Organic Cathode Material, ACS Applied Materials & Interfaces, (2022).
    [224] X. Ning, S. Meng, X. Fu, X. Ye, S. Chen, Efficient utilization of photogenerated electrons and holes for photocatalytic selective organic syntheses in one reaction system using a narrow band gap CdS photocatalyst, Green Chemistry, 18 (2016) 3628-3639.
    [225] C. Ling, X. Ye, J. Zhang, J. Zhang, S. Zhang, S. Meng, X. Fu, S. Chen, Solvothermal synthesis of CdIn2S4 photocatalyst for selective photosynthesis of organic aromatic compounds under visible light, Scientific reports, 7 (2017) 1-16.
    [226] S. Zhang, W. Huang, X. Fu, G. Chen, S. Meng, S. Chen, Ultra-low content of Pt modified CdS nanorods: Preparation, characterization, and application for photocatalytic selective oxidation of aromatic alcohols and reduction of nitroarenes in one reaction system, Journal of hazardous materials, 360 (2018) 182-192.

    無法下載圖示 全文公開日期 2025/01/10 (校內網路)
    全文公開日期 2025/01/10 (校外網路)
    全文公開日期 2025/01/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE