簡易檢索 / 詳目顯示

研究生: 潘宜銳
Irwan - Purnama
論文名稱: 用於最大功率追蹤太陽能系統之智慧型模糊控制器
An Intelligent Fuzzy-Logic Controller for Maximum Power Point Tracking Photovoltaic System
指導教授: 邱煌仁
Huang-Jen Chiu
羅有綱
Yu-Kang Lo
口試委員: 劉益華
Yi-Hua Liu
歐勝源
Sheng-Yuan Ou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 73
中文關鍵詞: Single-Fuzzy Logic ControlPhotovoltaic ModuleMaximum Power Point Tracking
外文關鍵詞: Maximum Power Point Tracking, Photovoltaic Module, Single-Fuzzy Logic Control
相關次數: 點閱:171下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A photovoltaic (PV) module has a nonlinear characteristic caused by a change in atmospheric condition. Therefore, maximum power point tracking (MPPT) methods are used to extract the maximum power of the PV module. The conventional method, such as perturbation and observation (P&O) and incremental conductance (INC), has drawbacks such as oscillation at the MPP during power fast tracking and power divergence under rapidly changing atmospheric condition. Thus, fuzzy logic controller (FLC) is implemented in the PV system to avoid the conventional problem. FLC method has not only fast response under rapidly changing atmospheric conditions but also small oscillation at the MPP. However, FLC presents difficulty of modification and tuning of control rules. The research shows that the FLC disadvantages can be reduced using single-fuzzy logic controller (S-FLC) without degrading performance. Furthermore, the control algorithm on DSP can be simplified. In the implementation, the MPPT system includes DSP TMS320F2808 as the controller, a boost DC/DC converter and resistive load. The experiment results prove that the S-FLC MPPT method performs similarly to the FLC MPPT method, and the expected MPPT efficiency can be achieved.


    A photovoltaic (PV) module has a nonlinear characteristic caused by a change in atmospheric condition. Therefore, maximum power point tracking (MPPT) methods are used to extract the maximum power of the PV module. The conventional method, such as perturbation and observation (P&O) and incremental conductance (INC), has drawbacks such as oscillation at the MPP during power fast tracking and power divergence under rapidly changing atmospheric condition. Thus, fuzzy logic controller (FLC) is implemented in the PV system to avoid the conventional problem. FLC method has not only fast response under rapidly changing atmospheric conditions but also small oscillation at the MPP. However, FLC presents difficulty of modification and tuning of control rules. The research shows that the FLC disadvantages can be reduced using single-fuzzy logic controller (S-FLC) without degrading performance. Furthermore, the control algorithm on DSP can be simplified. In the implementation, the MPPT system includes DSP TMS320F2808 as the controller, a boost DC/DC converter and resistive load. The experiment results prove that the S-FLC MPPT method performs similarly to the FLC MPPT method, and the expected MPPT efficiency can be achieved.

    Abstract...............................................................................................................................i Acknowledgements.......................................................................................................................ii Contents...............................................................................................................................iii List of Tables.................................................................................................................................v List of Figures.................................................................................................................................vi Chapter 1 Introduction............................................................................................................................1 1.1. Background..............................................................................................................................1 1.2. Scope...................................................................................................................................5 1.3. Organization............................................................................................................................5 Chapter 2 Photovoltaic System..................................................................................................................................7 2.1 PV Cell......................................................................................................7 2.1.1 Operating Principle..........................................................................8 2.1.2 Types of PV Cells............................................................................8 2.1.3 Equivalent of Circuit Model............................................................10 2.2 PV Module................................................................................................13 2.3 DC/DC Converter.....................................................................................15 2.3.1 Topology of Boost Converters........................................................15 2.3.2 Basic Operation of Boost Converter...............................................16 2.4 Mechanism of Load Matching.................................................................17 2.5 Conventional MPPT Method...................................................................19 2.5.1 P&O Method...................................................................................19 2.5.2 INC Method....................................................................................22 Chapter 3 Intelligent Fuzzy-Logic MPPT Controller…….....................................25 3.1 Fuzzy-Logic System.................................................................................25 3.1.1 Rules................................................................................................26 3.1.2 Fuzzy Inference Engine...................................................................26 3.1.3 Fuzzification....................................................................................29 3.1.4 Defuzzifier.......................................................................................29 3.2 Fuzzy-Logic Controller for MPPT Applications.....................................31 3.2.1 Fuzzification....................................................................................31 3.2.2 Rules and Fuzzy-Inference Engine.................................................33 3.2.3 Defuzzification................................................................................34 3.3 Single Fuzzy-Logic Controller.................................................................34 Chapter 4 Circuit Design and Experimental Verifications.....................................38 4.1 Boost Converter Design...........................................................................38 4.2 Introduction to DSP..................................................................................41 4.3 Controller Interface Design......................................................................45 4.3.1 PWM Driver Circuit........................................................................45 4.3.2 Voltage Sensing Circuit..................................................................46 4.3.3 Current Sensing Circuit...................................................................46 4.4 MPPT Experimental Results....................................................................47 Chapter 5 Conclusion...............................................................................................58 References................................................................................................................60

    [1] Y.K. Lo, H. J. Chiu, T.P. Lee, I. Purnama, and J.M. Wang, “Analysis and Design of a Photovoltaic System DC Connected to the Utility with a Power Factor Corrector,” IEEE Transaction on Industrial Electronics, Vol. 56, No. 11, November 2009, page 4354-4362.
    [2] Thomas Surek, “Progress in U.S. Photovoltaics: Looking back 30 Years and Looking Ahead 20,” Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, May 2003, page 2507-2512.
    [3] G. M. S. Azevedo, M. C. Calvalcanti, K. C. Oliveira, F.A.S. Neves, and Z.D. Lins, “Comparative Evaluation of Maximum Power Point Tracking Methods for Photovoltaic Systems,” Journal of Solar Energy Engineering, August 2009, Vol. 131, page 031006-1 - 031006-8.
    [4] R. Faranda, S. Leva and V. Maugeri, “MPPT Techniques for PV Systems: Energetic and Cost Comparison,” IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, 2008, page 1-6.
    [5] T. Esram and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Transaction on Energy Conversion, Vol. 2, Issue 2, 2007, page 439-449.
    [6] C.Y. Won, D.H. Kim, S.C. Kim, W.S. Kim, and H.S. Kim, “A New Maximum Power Point Tracker of Photovoltaic Arrays Using Fuzzy Controller,” 25th Annual IEEE Power Electronic Specialist Conference, Jun 1994, Vol 1, page 396-403.
    [7] Guohui Zeng and Qizhong Liu, “An Intellegent Fuzzy Method for MPPT of Photovoltaic Arrays,” Second International Symposium on Computational Intellegence and Design, 2009, page 356-359.
    [8] X.B. Li, Ke Dong, Hao Wu, “Study on the Intelligent Fuzzy Control Method for MPPT in Photovoltaic Voltage Grid System,” 3rd IEEE Conference on Industrial Electronics and Applications, 2008, ICIEA, page 708-711.
    [9] B.J. Choi, S.W. Kwak, and B.K. Kim, “Design of a Single-Fuzzy Logic Controller and Its Properties,” Fuzzy Sets and Systems 106, 1999, page 299-308.
    [10] B.J. Choi, S.W. Kwak, and B.K. Kim, “Design and Stability Analysis of Single-Input Fuzzy Logic Controller,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, April 2000, Volume 30, Issue 2, page 303-309.
    [11] Illan Glasner and Joseph Appelbaum, “Advantage of Boost VS. Buck Topology for Maximum Power Point Tracker in Photovoltaic System,” Nineteenth Convention of Electrical and Electronics Engineers in Israel, Nov 1996, page 355-358.
    [12] Weidong Xiao, Nathan Ozog, and W. G. Dunford, “Topology Study of Photovoltaic Interface for Maximum Power Point Tracking,” IEEE Transaction on Industrial Electronics, Vol. 54, No. 3, June 2007, page 1696-1704.
    [13] M. A. Green, “Photovoltaic: Technology Overview,” Energy Policy 28, (2000) page 989-998.
    [14] Jenny Nelson, “The Physics of Solar Cell,” Imperial College Press, 2003.
    [15] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power,” Journal of Applied Physics, Volume 25, Issue 5, May 1954, page 676-677.
    [16] Fred Treble, “Milestone in the Development of Crystalline Silicon Solar Cells,” Renewable Energy 15, 1998, page 473-478.
    [17] Roger A. Messenger, Jerry Ventre, “Photovoltaic Systems Engineering,” Second Edition, CRC Press, ISBN 0-8493-1793-2, 2004.
    [18] Chenming Hu, Richard M. White, “Solar Cell from Basic to Advanced Systems,” McGraw-Hill, 1983.
    [19] Masters, Gilbert M.,”Renewable and Efficient Electric Power System,” John Wiley and Sons, 2004.
    [20] R. W. Miles, “Photovoltaic Solar Cells: Choice of Materials and Production Methods,” Vacuum 80, Surface Engineering, Surface Instrumentation & Vacuum Technology, 2006, page 1090-1097.
    [21] Adolf Goetzberger, Christopher Hebling, Hans-Werner Schock, “Photovoltaic materials, history, status and outlook,” Material Science and Engineering R 40, 2003, pp. 1-46.
    [22] Tom Markvart and Luis Castaner, “Solar Cell Materials, Manufacture and Operation,” Elsevier, 2005.
    [23] Mohan, Undeland, and Robbins, “Power Electronics: Converter, Applications, and Design,” John Willey & Sons, Third Edition, 2003.
    [24] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum Photovoltaic Power Tracking: An Algorithm for Rapidly Changing Atmospheric Conditions,” IEE Proceedings– Generation, Transmission and Distribution, Vol. 142, No. 1, January 1995, page 59-64.
    [25] S. N. Sivanandam, S. Sumathi, and S.N. Deepa, “Introduction to Fuzzy Logic using Matlab,” Springer, 2007.
    [26] Jerry M. Mendel, “Fuzzy Logic System for Engineering: A tutorial,” Proceedings of IEEE, Vol. 83, March 1995, page 345-377.
    [27] Bimal K. Bose,” Modern Power Electronic and AC Drives,” Prentice Hall PTR, 2002.
    [28] Texas Instruments, “TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801, TMS320F2802, TMS320F2801, TMS320F2801xDSPs Data Manual,” Datasheet, 2003.
    [29] Hewlett Packard,”2.0 Amp Output Current IGBT Gate Drive Optocoupler—HCPL-3120 Technical Data,” Datasheet, 2005.
    [30] LEM, “Current Tranducer LA 100-P,” Datasheet, 1998.
    [31] bp Solar, “BP350-High-efficiency photovoltaic module using silicon nitride multi-crystalline silicon cells,” 6802.0036 BP350J Rev. C Datasheet, 2007
    [32] C. Dorofte, U. Borup, and F. Blaabjerg, “A Combined Two-Method Control Scheme for Grid-Connected Photovoltaic System,” Conference of Power Electronics and Application, 2005, page 1-10.

    無法下載圖示 全文公開日期 2015/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE