簡易檢索 / 詳目顯示

研究生: 黃嘉偉
Jia-Wei Huang
論文名稱: 適用於快速變動環境之太陽能最大功率追蹤技術研究
Research on the Maximum Power Point Tracking Technology for Photovoltaic System under Fast Changing Environments
指導教授: 劉益華
Yi-Hua Liu
口試委員: 劉添華
Tian-Hua Liu
羅有綱 
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
陳建富
Jiann-Fuh Chen
梁從主
Tsorng-Juu Liang
鄧人豪
Jen-Hao Teng
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 162
中文關鍵詞: 太陽能發電系統最大功率追蹤快速變動環境模擬之最大功率點軌跡(EML)類神經網路(NN)
外文關鍵詞: PV generation system (PGS), maximum power point tracking (MPPT), fast changing environments, emulated MPP locus (EML), neural network (NN)
相關次數: 點閱:233下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中提出了二種適用於快速變動環境下之簡易和快速的最大功率追蹤法。所提之技術是將非線性太陽能電池電流-電壓輸出特性使用數學近似的方式來實現。為了提高追蹤效率,本文應用多項式內插法來模擬最大功率點的操作軌跡,分別使用分段直線(Piecewise Line Segments, PLS)法和三次方程式(Cubic Equation, CE)法來近似最大功率點。本文所提之方法僅須透過少數的乘法和加法即可計算出電壓控制命令,因此非常簡單。在得知電壓控制命令後,系統將使用一個高速的電壓控制迴路調節太陽能電池的輸出電壓使其遵循模擬之最大功率點軌跡(Emulated MPP Locus, EML)移動。電壓控制迴路在照度瞬間變化下具有快速的反應,因此有助於改善最大功率追蹤效率。
    本文所提之方法可由類比和數位的方式加以實現。在類比實現方面,本文所提之PLS方法可由低成本、低功耗之類比元件來組成。所實現之類比最大功率追蹤器具有成本競爭力同時有較小的體積。在數位實現方面,本文使用數位控制器分別實現PLS法和CE法。本文所提之方法其基本設計原則是讓太陽能電池操作點固定在EML上,為了獲得EML,必須取得特定之太陽能電池參數。一般而言太陽能電池數學模型中的某些參數無法在太陽能電池使用手冊中得知,因此為了協助系統設計者,本文另將開發一個以類神經網路(Neural Network, NN)為基礎之程式來計算EML的參數。最後,模擬和實驗結果可驗證本文所提方法之可行性和有效性,並從模擬和實驗結果中可得知本文所提之方法具有快速、準確和靈活性等優點。


    In this dissertation, two simple and fast MPPT methods suitable for fast changing environments are proposed. The presented technique models the nonlinear I–V characteristics of the solar panel using numerical approximations. To improve the tracking efficiency, polynomial interpolation technique is employed to emulate the MPP locus. Two emulation results – piecewise line segments (PLS) and cubic equation (CE) – are utilized to accurately model the MPP locus. The proposed approach is simple because the calculation of the voltage command only requires a few multiplications and additions. After the voltage command is obtained, a separate high-speed voltage loop can then be applied to regulate the PV panel output voltage to follow the emulated MPP locus (EML). The voltage loop provides a fast response to sudden changes of irradiance levels and helps to improve the MPP tracking efficiency.
    The proposed methods can be implemented both in analog and digital form. For analog implementation, the proposed PLS method can be realized using low-cost, low-power analog components. The analog circuit implementation boasts the advantages of cost competitiveness and compactness of the size. For digital implementation, both the PLS method and CE method is implemented using digital signal controllers. Since the basic design principle of the proposed method is to operate the MPP of the PV array along the EML. To obtain the EML, the PV array parameters are required. However, some of the parameters required for numerical simulation are not usually available in the manufacturer’s datasheets. Therefore, to assist the system designer, a neural network (NN)-based program which can be used to calculate the parameters of the EML is also developed. Finally, simulation and experimental results will be provided to validate the feasibility and effectiveness of the proposed methods. From the simulation and experimental results, the proposed methods are fast, accurate and flexible.

    摘要 I Abstract II 誌謝 IV 目錄 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 太陽能最大功率追蹤系統架構 5 1.4 論文大綱 5 第二章 太陽能發電系統簡介 7 2.1 太陽能電池原理 8 2.2 太陽能電池種類 8 2.3 太陽能電池電氣特性 11 2.4 傳統太陽能最大功率追蹤技術 15 2.4.1 開路電壓法 15 2.4.2 短路電流法 16 2.4.3 擾動觀察法 16 2.4.4 增量電導法 19 2.5 適用於快速變動環境之太陽能最大功率追蹤技術 21 2.5.1 類比式最大功率追蹤技術 23 2.5.1.1標的量測法 23 2.5.1.2漣波關係控制追蹤法 24 2.5.1.3雙模組追蹤法 25 2.5.1.4低功率脈衝頻率調變追蹤法 26 2.5.1.5直線近似法 28 2.5.2 快速數位式最大功率追蹤技術 28 2.5.2.1 β參數近似追蹤法 29 2.5.2.2二區間追蹤法 30 2.5.2.3最陡下降追蹤法 32 2.5.2.4拋物線預測追蹤法 34 2.5.2.5變動步階追蹤法 37 第三章 太陽能最大功率追蹤系統之硬體架構與設計 38 3.1 降壓式轉換器簡介 39 3.2 降壓式轉換器小信號模型分析 41 3.3 降壓式轉換器元件值設計 47 3.4 降壓式轉換器之閉迴路補償器設計與分析 48 第四章 適用於快速變動環境之類比最大功率追蹤法 53 4.1 適用於快速變動環境之最大功率追蹤法則推導 53 4.2 適用於快速變動環境之最大功率追蹤法 電壓近似線方程式設計 58 4.3 適用於快速變動環境之最大功率追蹤法動作原理 63 4.4 適用於快速變動環境之類比最大功率追蹤器設計 67 4.5 適用於快速變動環境之類比最大功率追蹤器實現範例 71 4.6 適用於快速變動環境之類比最大功率追蹤器模擬 75 4.7 適用於快速變動環境之類比最大功率追蹤器實驗波形 78 第五章 適用於快速變動環境之數位最大功率追蹤法 85 5.1 dsPIC30F2020簡介 86 5.2 數位濾波器之韌體架構 87 5.2.1 數位濾波器種類 88 5.2.2 有限脈衝響應濾波器設計 89 5.2.3 數位濾波器程式流程 91 5.2.4 驗證數位濾波器程式 93 5.3 數位PID補償器 94 5.3.1 數位PID補償器動作原理 94 5.3.2 數位PID補償器程式流程圖 96 5.4 類神經網路輔助之參數設計 98 5.4.1 類神經網路基本原理 98 5.4.2 倒傳遞類神經網路說明 100 5.4.3 最大功率追蹤參數之倒傳遞類神經網路設計 104 5.4.4 以倒傳遞類神經網路模型預估最大功率追蹤參數 106 5.5 人機介面 115 5.6 適用於快速變動環境之最大功率追蹤法程式流程圖 116 5.7 適用於快速變動環境之數位最大功率追蹤器模擬 119 5.8 適用於快速變動環境之數位最大功率追蹤器實驗波形 125 第六章 結論與未來研究方向 134 6.1 結論 134 6.2 未來研究方向 135 參考文獻 136

    [1] Renewable Energy Policy Network for the 21st Century, Available at: http://www.ren21.net/.
    [2] M. A. S. Masoum, S. M. M. Badejani, and E. F. Fuchs, “Microprocessor-Controlled New Class of Optimal Battery Chargers for Photovoltaic Applications,” IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 599–606, Sep. 2004.
    [3] D. Dondi, A. Bertacchini, D. Brunelli, L. Larcher, and L. Benini, “Theoretical and Experimental Analyses of Photovoltaic Systems with Voltage- and Current-Based Maximum Power-Point Tracking,” IEEE Trans. Energy Convers., vol. 17, no. 4, pp. 514–522, Dec. 2002.
    [4] H. Patel and V. Agarwal, “Investigations into the Performance of Photovoltaics-Based Active Filter Configurations and their Control Schemesunder Uniform and Non-Uniform Radiation Conditions,” IET Renewable Power Gener., vol. 4, no. 1, pp. 12–22, Jan. 2010.
    [5] S. H. Park, G. R. Cha,Y. C. Jung, and C. Y. Won, “Design and Application for PV Generation System Using a Soft-Switching Boost Converter with SARC,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 515–522, Feb. 2010.
    [6] A. K. Abdelsalam, A. M. Massoud, S. Ahmed, and P. Enjeti, “High Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic Based Microgrids,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1010–1021, Apr. 2011.
    [7] G. J. Yu, Y. S. Jung, J. Y. Choi, and G. S. Kim, “A Novel Two-Mode MPPT Control Algorithm Based on Comparative Study of Existing Algorithms,” Sol. Energy, vol. 76, no. 4, pp. 455–463, Apr. 2004.
    [8] H. Koizumi, T. Mizuno, T. Kaito, Y. Noda, N. Goshima, M. Kawasaki, K. Nagasaka, and K. Kurokawa, “A Novel Microcontroller for Grid Connected Photovoltaic Systems,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1889–1897, Dec. 2006.
    [9] T. Andrejasic, M. Jankovec, and M. Topič, “Comparison of Direct Maximum Power Point Tracking Algorithms Using EN 50530 Dynamic Test Procedure,” IET Renew. Power Gener., vol. 5, no. 4, pp. 281–286, Jan. 2011.
    [10] Y. H. Liu and J. W. Huang, “A Fast and Low Cost Analog Maximum Power Point Tracking Method for Low Power Photovoltaic Systems,” Solar Energy, vol. 85, no. 11, pp. 2771–2780, Nov. 2011.
    [11] A. Tariq and J. Asghar, “Development of an Analog Maximum Power Point Tracker for Photovoltaic Panel,” International Conference on Power Electron. and Drives Systems, pp. 251–255, 2005.
    [12] T. Esram, J. W. Kimball, P. T. Krein, P. L. Chapman, and P. Midya, “Dynamic Maximum Power Point Tracking of Photovoltaic Arrays Using Ripple Correlation Control,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1282–1291,Sep. 2006.
    [13] J. H. Park, J. Y. Ahn, B. H. Cho, and G. J. Yu, “Dual-Module-Based Maximum Power Point Tracking Control of Photovoltaic Systems,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1036–1047, Aug. 2006.
    [14] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “A New Analog MPPT Technique: TEODI,” Proc. IN Photovoltaic’s: Research and Application, vol. 18, no. 1, pp. 28–41, Jan. 2010.
    [15] O. Lopez-Lapena, M. T.Penella, and M. Gasulla, “A New MPPT Method for Low-Power Solar Energy Harvesting,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3129–3138, Sep. 2010.
    [16] O. Lopez-Lapena, M. T.Penella, and M. Gasulla, “A Closed-Loop Maximum Power Point Tracker for Subwatt Photovoltaic Panels,” IEEE Trans. Ind. Electron., vol. 59, no.39, pp. 1588–1596, Mar. 2012.
    [17] V. Scarpa, S. Buso, and G. Spiazzi, “Low-Complexity MPPT Technique Exploiting the PV Module MPP Locus Characterization,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1531–1538, May 2009.
    [18] M. Sokolov and D. Shmilovitz, “A Modified MPPT Scheme for Accelerated Convergence,” IEEE Trans. Energy Convers., vol. 23, no. 4, pp. 1105–1107, Dec. 2008.
    [19] C. T. Pan, J. Y. Chen, C. P. Chu, and Y. S. Huang; “A Fast Maximum Power Point Tracker for Photovoltaic Power Systems,” IEEE Ind. Electron. Conference, IECON, pp. 390–393, Nov. 1999.
    [20] S. Jain and V. Agarwal, “A New Algorithm for Rapid Tracking of Approximate Maximum Power Point in Photovoltaic Systems,” IEEE Trans. Power Electron., vol. 2, no. 1, pp. 16–19, Mar. 2004.
    [21] N. Mutoh, M. Ohno, and T. Inoue, “A Method for MPPT Control While Searching for Parameters Corresponding to Weather Conditions for PV Generation Systems,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1055–1065, Aug. 2006.
    [22] W. Xiao, W. G. Dunford, P. R. Palmer, and A. Capel, “Application of Centered Differentiation and Steepest Descent to Maximum Power Point Tracking,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2539–2549, Oct. 2007.
    [23] F. S. Pai, R. M. Chao, S. H. Ko, and T. S. Lee, “Performance Evaluation of Parabolic Prediction to Maximum Power Point Tracking for PV Array,” IEEE Trans. Sustainable Energy, vol. 2, no. 1, pp. 60–68, Jan. 2011.
    [24] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A Variable Step Size INC MPPT Method for PV Systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2622–2628, Jul. 2008.
    [25] A. K. Abdelsalam, A. M. Massoud, S. Ahmed, and P. Enjeti, “High Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic Based Microgrids,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1010–1021, Apr.2011.
    [26] Q. Mei, M. Shan, L. Liu, and J. M. Guerrero, “A Novel Improved Variable Step-Size Incremental-Resistance MPPT Method for PV Systems,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2427–2434, Jun. 2011.
    [27] 翁敏航、楊茹媛、管鴻、晁成虎,「太陽能電池:原理、元件、材料、製程與檢測技術」東華書局,民國99 年5 月。
    [28] 顧鴻濤,「太陽能電池元件導論:材料、元件、製程、系統」全威圖書,民國98 年10 月。
    [29] M. F. Ishengoma and E. L. Norum, “Design and Implementation of a Digitally Controlled Stand-Alone Photovoltaic Power Supply,” Nordic Workshop on Power and Industrial Electronics, pp. 12-14, Aug. 2002.
    [30] H. Patel and V. Agarwal, “MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 302–310, Mar. 2008.
    [31] Y. J. Wang and P. C. Hsu, “Analytical Modelling of Partial Shading and Different Orientation of Photovoltaic Modules,” IET Renew. Power Gener., vol. 4, no. 3, pp. 272–282, May 2010.
    [32] N. Mohan, T. M. Undeland, and W. Robbins, “Power Electronics Converters Application and Design,” 3rd Edition, 2003.
    [33] A. Pressman, K. Billings, and T. Morey, “Switching Power Supply Design,” 3rd Edition, 2009.
    [34] M. H. Rashid “Power Electronics: Circuits, Devices and Applications,” 3rd Edition, 2004.
    [35] R. W. Erickson and D. Maksmovic, “Fundamentals of Power Electronics,” 2rd Edition, 2000.
    [36] N. Dasgupta, A. Pandey, and A. K. Mukerjee, “Voltage-Sensing-Based Photovoltaic MPPT with Improved Tracking and Drift Avoidance Capabilities,” Solar Energy Materials and Solar Cells, vol. 92, no. 12, pp. 1552–1558, Dec. 2008.
    [37] C. C. Chu and C. L. Chen, “Robust Maximum Power Point Tracking Method for Photovoltaic Cells: A sliding Mode Control Approach,” Solar Energy, vol. 83, no. 8, pp. 1370–1378, Aug. 2009.
    [38] J. C. Wang, Y. L. Su, J. C. Shieh, and J. A. Jiang, “High-Accuracy Maximum Power Point Estimation for Photovoltaic Arrays,” Solar Energy Materials and Solar Cells, vol. 95, no. 3, pp. 843–851, Mar. 2011.
    [39] A. Messai, A. Mellit, A. Guessoum, and S. A. Kalogirou, “ Maximum Power Point Tracking Using a GA Optimized Fuzzy Logic Controller and its FPGA Implementation,” Solar Energy, vol. 85, no. 2, pp. 265–277, Feb. 2011.
    [40] P. E. Kakosimos and A. G. Kladas, “Implementation of Photovoltaic Array MPPT through Fixed Step Predictive Control Technique,” Renewable Energy, vol. 36, no. 9, pp. 2508–2514, Sep. 2011.
    [41] D. P. Hohm and M. E. Ropp, “Comparative Study of Maximum Power Point Tracking Algorithms,” Proc. IEE Photovoltaic’s: Research and Application, vol. 11, no. 1, pp. 47–62, Jan. 2003.
    [42] V. Salas, E. Olias, A. Barrado, and A. Lazaro, “Review of the Maximum Power Point Tracking Algorithms for Stand-Alone Photovoltaic Systems,” Solar Energy Materials and Solar Cells, vol. 90, no. 11, pp. 1555–1578, Jul. 2006.
    [43] T. Esram and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Trans. Energy Convers. Electron., vol. 22, no. 2, pp. 439–449, Jun. 2007.
    [44] D. Dondi, A. Bertacchini, D. Brunelli, L. Larcher, and L. Benini, “Modeling and Optimization of a Solar Energy Harvester System for Self-Powered Wireless Sensor Networks,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2759–2766, Jul. 2008.
    [45] R. Leyva, C. Alonso, I. Queinnec, A. Cid-Pastor, D. Lagrange, and L. Martinez-Salamero, “MPPT of Photovoltaic Systems using Extremum–Seeking Control,” IEEE Trans. on Aerospace and Electron. Systems, vol. 42, no. 1, pp. 249–258, Jan. 2006.
    [46] J. M. Enrique, J. M. Andujar, and M. A. Bohorquez, “ A Reliable, Fast and Low Cost Maximum Power Point Tracker for Photovoltaic Applications,” Solar Energy, vol. 84, no. 1, pp. 79–89, Jan. 2010.
    [47] H. S. H. Chung, K. K. Tse, S. Y. R. Hui, C. M. Mok, and M. T. Ho, “A Novel Maximum Power Point Tracking Technique for Solar Panels Using a SEPIC or Cuk Converter,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 717–724, May 2003.
    [48] D. Petreuş, T. Patarau, S. Daraban, C. Morel, and B. Morley, “A Novel Maximum Power Point Tracker Based on Analog and Digital Control Loops,” Solar Energy, vol. 85, no. 3, pp. 588–600, Mar. 2011.
    [49] D. M. K. Schofield, M. P. Foster, and D. A. Stone, “Low-Cost Solar Emulator for Evaluation of Maximum Power Point Tracking Methods,” IEEE Electronics Letters, vol. 47, no. 3, pp. 208–209, Feb. 2011.
    [50] J. M. Blanes, A. Garrigos, J. A. Carrasco, A. H. Weinberg, E. Maset, E. Sanchis-Kilders, J. B. Ejea, and A. Ferreres, “Two-Stage MPPT Power Regulator for Satellite Electrical Propulsion System,” IEEE Trans. on Aerospace and Electron. Systems, vol. 47, no. 3, pp. 1617–1630, Jul. 2011.
    [51] L. Zhang, W. G. Hurley, and W. H. Wolfle, “A New Approach to Achieve Maximum Power Point Tracking for PV System with a Variable Inductor,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1031–1037, Apr. 2011.
    [52] O. Lopez-Lapena, M. T. Penella, and M. Gasulla, “A Closed-Loop Maximum Power Point Tracker for Subwatt Photovoltaic Panels,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1588–1596, Mar. 2012.
    [53] W. M. Lin, C. M. Hong, and C. H. Chen, “Neural-Network-Based MPPT Control of a Stand-Alone Hybrid Power Generation System,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3571–3581, Dec. 2011.
    [54] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1198–1208, May 2009.
    [55] D. Sera, R. Teodorescu, J. Hantschel, and M. Knoll, “Optimized Maximum Power Point Tracker for Fast-Changing Environmental Conditions,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2629–2637, Jul. 2008.
    [56] Chroma Datasheet of 62150H-600S, Chroma, Available at: http://www.chroma.com.tw/product/detail.aspx?id=2437.
    [57] Microchip Datasheet of dsPIC30F1010/2020, Microchip, Available at: http://www.microchip.com/.
    [58] 曾百由,「數位訊號控制器原理與應用」,宏友圖書開發股份有限公司,民國96年11月。
    [59] 賴文能、林國祥、高志暐,「數位信號處理」第三版,高立圖書有限公司,2007年。
    [60] 趙清風,「控制工程初階-使用MATLAB Simulink」,全華科技圖書,民國90年12月。
    [61] 劉金琨,「先進PID控制-MATLAB仿真」,電子工業出版社,2007年5月。
    [62] 葉怡成,「類神經網路模式應用與實作」,儒林圖書出版,2003。
    [63] M. C. Mabel and E. Fernandez, “Estimation of Energy Yield From Wind Farms Using Artificial Neural Networks,” IEEE Trans. Energy Convers., vol. 24, no. 2, pp. 459–464, Jun. 2009.
    [64] O. S. Ebrahim, M. A. Badr, A. S. Elgendy, and P. K. Jain, “ANN-Based Optimal Energy Control of Induction Motor Drive in Pumping Applications,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 652–660, September 2010.
    [65] K. Y. Lee, J. H. V. Sickel, J. A. Hoffman, W. H. Jung, and S. H. Kim, “Controller Design for a Large-Scale Ultrasupercritical Once-Through Boiler Power Plant,” IEEE Trans. Energy Convers., vol. 25, no. 4, pp. 2629–2637, December 2010.
    [66] S. V. Puranik, A. Keyhani, F. Khorrami, W. H. Jung, and S. H. Kim, “Neural Network Modeling of Proton Exchange Membrane Fuel Cell,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 474–483, Jun. 2010.
    [67] G. Capizzi, F. Bonanno, and G. M. Tina, “Recurrent Neural Network-Based Modeling and Simulation of Lead-Acid Batteries Charge–Discharge,” IEEE Trans. Energy Convers., vol. 26, no. 2, pp. 435–443, Jun. 2011.
    [68] 朱凱、王正林,「精通MATLAB神經網絡」,電子工業出版,2010年1月。
    [69] M. M. Gupta, L. Jin, and N.Homma, Static and Dynamic Neural Networks. New York: Wiley, 2003.

    QR CODE