簡易檢索 / 詳目顯示

研究生: 林慰翰
Wei-Han Lin
論文名稱: 以粒子群演算法調度寬輸入電壓範圍並聯輸入串並聯輸出直流/直流隔離型轉換器之功率
Power Dispatch for an Input-Series and Output-Series-Parallel DC/DC Isolated Converter with Wide Input Voltage Range by Particle Swarm Algorithm
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 陳良瑞
Liang-Rui Chen
鄧人豪
Jen-Hao Teng
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 122
中文關鍵詞: 風力發電機寬輸入電壓範圍最大功率追蹤並聯輸入串並聯輸出全橋轉換器粒子群演算法
外文關鍵詞: wind turbine, wide input voltage range, maximum power point tracking, parallel input, series-parallel output, H-bridge converter, particle swarm optimization.
相關次數: 點閱:491下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一並聯輸入串並聯輸出直流/直流隔離型轉換器,該轉換器適合應用在寬電壓範圍如風力渦輪發電機,所提之架構主要由三組不同額定功率之相移式全橋轉換器及一串並聯切換電路構成。三組轉換器的輸入端以並聯型式連接,輸出端則連接至一串並聯切換電路,藉由切換機制使轉換器輸出端具有並聯或串聯等九種不同的連接狀態,並透過系統輸入電壓與功率值來判斷操作模式。當輸入電壓低時輸出側為串聯模式以達成高電壓增益;當輸入電壓較高時為並聯模式以共同分擔功率。搭配擾動觀察法的最大功率追蹤策略實現從輸入源獲得最大功率輸出。另一方面,探討系統在並聯操作時的功率調度策略,事先量測三組轉換器之效率特性,並使用離線粒子群演算法求解系統在功率範圍內最大效率之最佳功率調度,使用德州儀器公司所產的數位信號處理器(DSP TMS320F28069)作為數位控制器,為簡單起見,各轉換器之負載變化狀況有三條近似線性分布的方程式被建立在數位控制器,調度系統在並聯模式下效率最佳化之各轉換器功率,最後,本文建立一400V/5kW實測系統進行性能試驗與量測,並可操作於輸入範圍45V~400V,透過模擬與實測驗證所提出架構之可行性。


    This thesis proposes an input-series and output-series-parallel DC/DC isolated converter, which is suitable for application with wide voltage range, such as wind turbine generator. The proposed structure consists of three phase-shift H-bridge converters with different power ratings and a series-parallel-switching circuit. The input ports of the H-bridge converters are in parallel directly, while the output ports can connect in parallel and/or series through a switching mechanism, which provides nine different configurations of the output ports of the three H-bridges. The level of input voltage and power determine which configuration to select. The series configurations provide high voltage gain for low level of input voltage, while the parallel ones operate under higher voltage and share the power. In this thesis, through the perturbation and observation method to achieve the maximum power point tracking for obtaining the maximum power from the input source. Moreover, this paper investigates the strategy of power dispatch when parallel configuration operating. The efficiency characteristics of the three different-rating H-bridge converters are measured in advance, and an off-line particle swarm algorithm solves the optimal power dispatch to maximize the system efficiency for a certain power range. A DSP-based controller (TMS320F28069) produced by Texas Instruments which executes the necessary progress of the proposed system. For simplicity, three nearly linear distribution equations for each H-bridge converter is established in the digital controller to dispatch suitable power of each converter for maximizing system efficiency under parallel configuration. Finally, this paper establishes a 400V/5kW prototype to verify, measure, and evaluate the proposed system. The proposed system worked well under the input range varying from 45V to 400V. Both simulation and experimental results demonstrate the validity of the proposed converter.

    摘要 I Abstract II 致謝 IV 目錄 V 圖索引 VIII 表索引 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2系統描述與研究方法 2 1.3章節概述 3 第二章 風力發電機特性 5 2.1風力發電機工作原理 5 2.2風力發電機種類 9 2.3最大功率追蹤法則介紹 11 第三章 系統架構與原理 16 3.1 直流/直流隔離型轉換器 16 3.1.1 相移式全橋轉換器主架構介紹 16 3.1.2 相移式全橋轉換器主電路控制信號介紹 17 3.1.3 主電路轉換狀態區間操作原理分析 18 3.1.4 零電壓切換條件分析 30 3.2 轉換器規格分配介紹 32 第四章 系統控制策略 35 4.1 轉換器輸入輸出串並聯連接介紹 35 4.2 串並聯切換電路 38 4.2.1串並聯切換電路主架構介紹 38 4.2.2串並聯切換電路主電路控制訊號介紹 38 4.2.3 串並聯切換電路轉換狀態區間操作原理 39 4.3模式切換控制策略 43 4.4轉換器最佳效率控制策略 45 4.4.1效率曲線擬合 47 4.4.2線性回歸-最小平方法 47 4.5粒子群演算法介紹 51 4.5.1慣性權重粒子群最佳化 53 4.5.2應用PSO-IW於最佳效率之輸出功率調度 55 4.5.3 模式切換策略與效率最佳化策略 58 4.6模式切換組合之分析與模擬 61 4.6.1 模式切換組合之分析 61 4.6.2 模式切換組合之模擬 64 第五章 硬體架構與軟體規劃 68 5.1硬體架構 69 5.1.1相移式全橋轉換器硬體設計實例 70 5.1.2相移式全橋轉換器軟體控制策略 83 5.2串並聯切換電路設計考量 89 5.2.1串並聯切換電路硬體設計實例 90 5.2.2串並聯切換電路軟體控制策略 91 第六章 實作與量測 93 6.1並聯輸入串並聯輸出隔離型直流/直流轉換器 93 6.2 系統實測結果 94 6.2.1 模式連續切換 96 6.2.2 模式不連續切換 105 6.3 效率最佳化策略之驗證 109 第七章 結論與未來研究方向 113 7.1結論 113 7.2未來研究方向 114 參考文獻 115 附錄A 其他模式連續切換之實測波形 118 附錄B其他模式不連續切換之實測波形 121

    [1] 牛山泉,「風力能源與風力發電系統設計」,科技圖書股份有限公司,2011。
    [2] Z. Yu, M. Elbuluk, and Y. Sozer, “Stability analysis of maximum power point tracking (MPPT) method in wind power systems,” IEEE Trans.Industry Applications., vol.49, no.3,pp. 1129-1136, 2013.
    [3] H. Kun and C. Guo-zhu, "A novel control strategy of wind turbine MPPT implementation for direct-drive PMSG wind generation imitation platform," in Power Electronics and Motion Control Conference, 2009. IPEMC '09. IEEE 6th International, 2009, pp. 2255-2259.
    [4] 林正宏,「1kW 全橋相移式升壓型零電壓切換轉換器之研製」,碩士學位論文,國立臺灣科技大學,2010。
    [5] 劉志,「高電壓輸出相移式全橋轉換器之分析與設計」,碩士學位論文,國立臺灣科技大學,2006。
    [6] 張存安,「風力發電最大功率追蹤之並聯輸入串並聯輸出隔離型直流/直流轉換器研製」,碩士學位論文,國立臺灣科技大學,2012。
    [7] 蕭智文,「風力發電系統之並聯輸入串並聯輸出隔離型直流/直流轉換器」,碩士學位論文,國立臺灣科技大學,2013。
    [8] 吳志穎,「具輸入並聯/輸出串並聯隔離型直流/直流轉換器之風力發電系統」,碩士學位論文,國立臺灣科技大學,2014。
    [9] 林憲詮,「以粒子群演算法調度並聯輸入串並聯輸出直流/直流轉換器之功率」,碩士學位論文,國立臺灣科技大學,2015。
    [10] N.Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics, 3rd ed. New York: Wiley, 2003.
    [11] M. R. Patel, Wind and Solar Power Systems: Design, Analysis, and Operation: Taylor & Francis, 2006.
    [12] 朱佳仁,「風工程概論」,科技圖書股份有限公司,2006。
    [13] 王建斌,「風力發電系統最大功率追蹤方法之研究」,碩士學位論文,中原大學,2005。
    [14] 王寶勝,「以數位信號處理器為基礎之具可控整流風力與太陽能複合發電系統之研製」,碩士學位論文,國立臺灣科技大學,2009。
    [15] 鄭堅宏,「雙風力機發電系統之電力轉換器研製」,碩士學位論文,雲林科技大學,2010。
    [16] 曹培熙,「大學物理學」,曉園出版社有限公司,1989。
    [17] K. S. M. Raza, H. Goto, H. J. Guo, and O. Ichinokura, “A novel algorithm for fast and efficient maximum power point tracking of wind energy conversion systems,” in Proc. IEEE ICEM, 2008, pp. 1-6.
    [18] K. S. M. Raza, H. Goto, H. J. Guo, and O. Ichinokura, “A novel speed-sensorless adaptive hill climbing algorithm for fast and efficient maximum power point tracking of wind energy conversion systems,” in Proc. IEEE ICSET, 2008, pp. 628-633.
    [19] M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs, “Theoretical and experimental analyses of photovoltaic systems with voltageand current-based maximum power-point tracking,” IEEE Trans. Power and Energy, vol. 17, pp. 514-522, 2002.
    [20] K. Harada and G. Zhao, “Controlled power interface between solar cells and AC source,” IEEE Trans. Power Electronics., vol. 8, pp. 654-662, 1993.
    [21] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,” IEE Generation, Transmission and Distribution, vol. 142, pp. 59-64, 1995.
    [22] S. Luo, Z. Ye, R. L. Lin, and F. C. Lee, “A classification and evaluation of paralleling methods for power supply modules,” in Proc. IEEE PESC, 1999, vol.2, pp.901-908.
    [23] J. Cheng, J. Shi, and X. He, “A novel input-parallel output-parallel connected DC-DC converter modules with automatic sharing of currents,”in Proc. IEEE IPEMC, 2012, pp. 1871-1876.
    [24] J. Shi, L. Zhou, and X. He, “Common-Duty-Ratio Control of Input-Parallel Output-Parallel (IPOP) Connected DC-DC Converter Modules With Automatic Sharing of Currents,”IEEE Trans. Power Electronics., vol. 27, no. 7, pp. 3277-3291, 2012.
    [25] S. N. Manias and G. Kostakis, “Modular DC-DC convertor for high-output voltage applications,” IEEE Electric Power Applications, vol. 140, no. 2, pp. 97-102, 1993.
    [26] L. Wang, “Input-Parallel and Output-Series Modular DC-DC Converters with One Common Filter,”in Proc. IEEE EUROCON, 2007, pp. 1398-1402.
    [27] Y. Zhao; W. Li, W. Li, and X. He, “An active clamp ZVT converter with input-parallel and output-series configuration,”in Proc. IEEEAPEC, 2010, pp.1454-1459.
    [28] R. Giri, R. Ayyanar, and E. Ledezma, “Input-series and output-series connected modular DC-DC converters with active input voltage and output voltage sharing,” in Proc. IEEE APEC, 2004, vol. 3, pp. 1751-1756.
    [29] W.Chen, K.Zhuang, and X. Ruan, “A input-series andoutput-parallel-connected inverter system for high-input-voltage applications,” IEEE Trans. Power Electronics, vol. 24, no. 9, pp. 2127-2137, 2009.
    [30] Q. Lu, Z. Yang, S. Lin, S. Wang, and C. Wang, “Research on voltage sharing for input-series-output-series phase-shift full-bridge converters with common-duty-ratio,”in Proc. IEEE IECON, 2011, pp. 1548-1553.
    [31] J. Shi, J. Luo, and X. He, “Common-duty-ratio control of input-series output-parallel connected phase-shift full-bridge DC–DC converter modules,” IEEE Trans. Power Electronics., vol. 26, no. 11, pp. 3318-3329, 2011.
    [32] J. P. Lee, B. D. Min, T. J. Kim, D. W. Yoo, and J. Y. Yoo, “High efficient interleaved input-series-output-parallel-connected DC/DC converter for photovoltaic power conditioning system,” in Proc. IEEE ECCE,2009, pp. 327-329.
    [33] R. Ayyanar, R. Giri, and N. Mohan, “Active input-voltage and load-current sharing in input-series and output-parallel connected modular DC-DC converters using dynamic input-voltage reference scheme,” IEEE Trans. Power Electronics., vol. 19, no. 6, pp. 1462-1473, 2004.
    [34] Cheng, Y.I (2009) Least Square Estimation for Monotone Regression. Department of Mathematics, Tamkang University, master thesis.
    [35] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc. IEEE Int.Conf. on Neural Networks, Perth, Australia, vol. 4, pp. 1942-1948, 1995.
    [36] R. C. Eberhart and J. Kennedy, “A newoptimizer using particle swarm theory,” in: Proc. IEEE Int. Symposium on Micro Machine and Human Science,Nagoya, Japan, pp. 39-43,1995.
    [37] C. W. Reynolds, “Flocks, herds and schools: a distributed behavioralmodel,”Computer Graphics, 21(4):25-37, 1987.
    [38] F. Heppner and U. Grenander, “A stochastic nonlinear model for coordinatedbird flocks,” In S. Krasner, Ed, The Ubiquity of Chaos. AAAS Publications, Washington, DC, 1990.
    [39] 李維平、黃郁授、戴彰廷,「自適應慣性權重改良粒子群演算法之研究」中原大學資訊管理所,九十六年。
    [40] Y. M. Atwa, E. F. El-Saadany, M. M. A. Salama, and R. Seethpathy, “Optimal renewable resources mix for distribution system energy lossminimization,” IEEETrans. Power Syst., vol. 25, no. 1, pp. 360-370,Feb. 2010.
    [41] Jen-HaoTeng, Senior Member, IEEE, Shang-Wen Luan, Dong-Jing Lee, and Yong-Qing Huang “Optimal Charging/Discharging Scheduling of Battery Storage Systems for Distribution Systems InterconnectedWith Sizeable PV Generation Systems.” IEEE Trans. On Power Systems, vol. 28, no. 2, May, 2013.
    [42] Shi, Y. and Eberhart, R., “A modified particle swarm optimizer”, Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69-73, Anchorage, AK, USA, IEEE, Piscataway, NJ, USA (1998)
    [43] Shi, Y. and Eberhart, R., “Empirical study of particle swarm optimization”, Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3, pp. 1945-1950, Washington, DC, IEEE, Piscataway, NJ, USA (1999)

    QR CODE