簡易檢索 / 詳目顯示

研究生: 張子聞
Zih-Wun Jhang
論文名稱: 不同浸泡條件之單晶矽基板化學反應層厚度分析與固定下壓力之切削深度分析
Analysis of thickness of chemical reaction layer of single-crystal silicon substrate under different soaking conditions and analysis of cutting depth at a fixed down force
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 王國雄
none
許覺良
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 298
中文關鍵詞: 比下壓能原子力顯微鏡單晶矽晶圓基板化學反應層厚度浸泡研磨液
外文關鍵詞: specific down force energy (SDFE), atomic force microscopy (AFM), single-crystal silicon wafer substrate, thickness of chemical reaction layer, soaking slurry
相關次數: 點閱:236下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用計算化學反應層厚度理論方法及實驗,探討受研磨液影響之不同浸泡條件的單晶矽晶圓基板化學反應層厚度及在固定下壓力下不同浸泡條件的切削深度。本研究先運用原子力顯微鏡之實驗,得出未受研磨液浸泡的單晶矽晶圓基板之比下壓能值。再以較小的下壓力對浸泡不同研磨液條件的單晶矽晶圓基板進行原子力顯微鏡實驗,得出的受研磨液浸泡後單晶矽晶圓基板的化學反應層厚度內之比下壓能值。接著以5Å的切削深度間隔及下壓力做原子力顯微鏡加工實驗,並觀察化學反應層厚度內及超出化學反應層厚度之比下能值。當實驗的比下壓能值從穩定後開始逐步增加,代表原子力顯微鏡探針已從化學反應層厚度逐漸下壓至未受研磨液化學反應影響之原材料,所以比下壓能值的變化就成為重要的指標。再以比下壓能之觀念應用計算單晶矽化學反應層厚度之理論方法,計算出不同浸泡條件之化學反應層厚度。最後應用前述實驗所得之浸泡研磨液的比下壓能開始增加的切削深度附近,以1Å的切削深度間隔做AFM實驗,並觀察其比下壓能值的變化,得到實驗之化學反應層厚度並驗證其計算所得之化學反應層厚度為可行。最後再以迴歸理論分析得出在不同研磨液浸泡條件之下的化學反應層厚度的迴歸公式。利用此迴歸公式可同時估算不同研磨液浸泡時間、浸泡溫度以及研磨液體積濃度所形成化學反應層厚度。本研究之研磨液浸泡條件分別為不同浸泡時間、不同浸泡溫度、不同體積濃度以及在不同浸泡溫度與不同體積濃度,進而分析其對化學反應層厚度的影響。上述的計算及實驗所得之化學反應層厚度的分析結果顯示當研磨液浸泡時間增加、研磨液溫度上升以及研磨液體積濃度上升時,單晶矽晶圓基板受研磨液化學反應所形成之化學反應層厚度會增加,而比下壓能值會減少。
      在以不同研磨液浸泡的條件下,本研究另以較小的下壓力及在切削深度不超過反應層厚度的條件下,用比下壓能理論來模擬出固定下壓力所切削出的不同浸泡條件之切削深度,並分析不同研磨液浸泡條件以固定下壓力下所得切削深度的變化。而因不同研磨液浸泡條件下會有不同的比下能值,分析結果得知當固定下壓力下,研磨液浸泡溫度50℃與體積濃度50%的切削深度與未浸泡研磨液之單晶矽的切削深度差異量最大;隨著體積濃度得減少,發現切削深度與未浸泡研磨液之單晶矽固定下壓力下的切削深度差異量是有區間性。但在研磨液浸泡溫度較小,體積濃度逐漸變小的情況下,則切削深度差異量卻是有穩定的逐漸遞減的現象。


    The study applies the theoretical method and experiment for calculation of the thickness of chemical reaction layer, and explores the thickness of chemical reaction layer of single-crystal silicon wafer substrate under different soaking conditions as affected by slurry, and the cutting depth at a fixed down force under different soaking conditions. First of all, the study uses an experiment of atomic force microscopy (AFM) to obtain the specific down force energy (SDFE) value of single-crystal silicon wafer substrate unsoaked in slurry, and then uses a smaller down force to conduct AFM experiment of single-crystal silicon wafer substrate under different slurry soaking conditions. The study acquires the SDFE value of single-crystal silicon wafer substrate soaked in slurry within the thickness of chemical reaction layer. After that, the study takes a cutting depth interval 5Å and down force to conduct AFM cutting experiment, and observes the SDFE values of the one within the thickness of chemical reaction layer to the one exceeding the thickness of chemical reaction layer. In the experiment when SDFE value starts to increase gradually from stability, it represents that AFM probe has been gradually pressing from the thickness of chemical reaction layer to the silicon material not affected by chemical reaction of slurry at all. Therefore, the change of SDFE value becomes an important indicator. Then the study uses the theoretical method that applies SDFE concept for calculation of the thickness of chemical reaction layer of single-crystal silicon, to calculate the thickness of chemical reaction layer under different soaking conditions. Finally, the study conducts AFM experiment at cutting depth interval 1Å at the place near the cutting depth of the above experimental SDFE value of the soaked slurry, starting to increase. The study also observes the change of its SDFE value, and achieves the thickness of chemical reaction layer in the experiment. It is proved that the above calculation of the thickness of chemical reaction layer is feasible. Finally, using theoretical regression analysis, the study acquires a regression equation for the thickness of chemical reaction layer under different slurry soaking conditions. With this regression equation, the study can simultaneously estimate the thicknesses of chemical reaction layers formed under different slurry soaking periods, soaking temperatures and slurry volume concentrations. In this experiment, slurry soaking conditions are divided into different soaking periods, different soaking temperatures, different soaking slurry volume concentrations, and different soaking temperatures with different soaking slurry volume concentrations. The study analyzes their effects on the thickness of chemical reaction layer. The above analytic results of the thickness of chemical reaction layer obtained from calculation and experiments show that when slurry soaking period increases, with slurry temperature risen and slurry volume concentration increased, the thickness of chemical reaction layer formed by chemical reaction of slurry to single-crystal silicon wafer substrate would be increased, and SDFE value would be decreased.
    Under the various slurry soaking conditions mentioned above, the study uses a smaller down force, with its cutting depth not exceeding the thickness of chemical reaction layer, and employs SDFE theory to simulate the cutting depth under different soaking conditions cut at a fixed down force, and analyze the change of cutting depths acquired at a fixed down force under different slurry soaking conditions.Since different slurry soaking conditions have different SDFE values, As known from the analytic results, when down force is fixed, the cutting depth under slurry soaking temperature 50oC and slurry volume concentration 50% is most greatly different from the cutting depth of single-crystal silicon unsoaked in slurry. As slurry volume concentration has to be decreased, the difference of the cutting depth from the cutting depth of single-crystal silicon unsoaked in slurry cut at a fixed down force is found that it has interal phenomenon. But under the conditions that the slurry soaking temperature is lower and slurry volume concentration becomes smaller gradually, the difference in cutting depth tends to have stable decrease gradually.

    摘要 I Abstract III 誌謝 VII 目錄 VIII 圖目錄 XIII 表目錄 XIX 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 1.3 文獻回顧 4 1.4 本文架構 9 第二章 實驗規劃及迴歸分析理論 12 2.1 實驗設備介紹 12 2.1.1 多模態原子力顯微鏡D3100 12 2.1.2實驗試片及探針 13 2.1.3 研磨液 14 2.1.4 酸鹼值檢測計及加熱裝置 15 2.2. 原子力顯微鏡操作原理及下壓力量測方法 15 2.2.1 AFM探針下壓力量測方法 19 2.3 實驗規劃 22 2.4 迴歸分析理論 25 2.4.1 多元線性迴歸模型 25 2.4.2 本文所用最小平方法(Least square method)矩陣表示 27 2.4.3迴歸分析模型之重要指標 30 第三章 利用比下壓能理論建立浸泡研磨液之單晶矽基板化學反應層厚度之計算模式 33 3.1 比下壓能理論模型及計算比下壓能方法 33 3.2 比下壓能理論建立計算浸泡研磨液之單晶矽基板的化學反應層厚度之計算模式 39 第四章 不同研磨液浸泡條件下單晶矽基板化學反應層厚度計算結果與單晶矽基板化學反應層厚度實驗結果之分析 42 4.1 量測未浸泡研磨液之單晶矽基板之比下壓能值實驗 44 4.2 研磨液不同浸泡時間對單晶矽基板化學反應層影響之實驗 46 4.2.1量測單晶矽基板於研磨液不同浸泡時間產生化學反應層之比下壓能值 46 4.2.2 計算單晶矽基板於研磨液不同浸泡時間產生化學反應層厚度 69 4.2.3 實驗驗證計算單晶矽基板於研磨液不同浸泡時間產生之化學反應層厚度 75 4.3 研磨液不同浸泡溫度對單晶矽基板化學反應層影響之實 驗 81 4.3.1量測單晶矽基板於研磨液不同浸泡溫度產生化學反應層之比下壓能值 81 4.3.2 計算單晶矽基板於研磨液不同浸泡溫度產生化學反應層厚度 92 4.3.3 實驗驗證計算單晶矽基板於研磨液不同浸泡溫度產生化學反應層厚度 95 4.4 研磨液不同浸泡體積濃度對單晶矽基板化學反應層影響之實驗 99 4.4.1量測單晶矽基板於研磨液不同浸泡體積濃度產生化學反應層之比下壓能值 99 4.4.2 計算單晶矽基板於研磨液不同浸泡體積濃度產生化學反應層厚度 113 4.4.3 實驗驗證計算單晶矽基板於研磨液不同浸泡體積濃度產生化學反應層厚度 117 4.5研磨液不同浸泡體積濃度與溫度對單晶矽基板化學反應層厚度影響之實驗 120 4.5.1量測單晶矽基板於研磨液不同浸泡體積濃度與溫度相互交叉作用產生化學反應層之比下壓能值 123 4.5.2 計算單晶矽基板於研磨液不同浸泡體積濃度與溫度所產生化學反應層厚度 125 4.5.3 實驗驗證計算單晶矽基板於研磨液不同浸泡體積濃度與溫度產生化學反應層厚度 127 4.6單晶矽基板化學反應層厚度實驗結果迴歸分析 128 4.6.1 研磨液不同浸泡時間之單晶矽化學反應層厚度實驗結果之迴歸分析 129 4.6.2研磨液不同浸泡溫度之單晶矽化學反應層厚度實驗結果之迴歸分析 139 4.6.3研磨液不同浸泡體積濃度之單晶矽化學反應層厚度實驗結果迴歸分析 142 4.6.4 研磨液不同浸泡溫度與體積濃度之單晶矽化學反應層厚度實驗結果之迴歸分析 146 第五章 固定下壓力之研磨液不同浸泡條件下的單晶矽基板之化學反應層內的切削深度實驗結果與分析 153 5.1固定下壓力之研磨液不同浸泡時間之單晶矽基板化學反應層之實驗與模擬結果分析 153 5.2固定下壓力之研磨液不同浸泡溫度與體積濃度之單晶矽基板化學反應層之實驗與模擬結果分析 160 5.3固定下壓力之研磨液不同浸泡條件之單晶矽基板化學反應層之pH值實驗結果分析 172 第六章 結論 174 參考文獻 179 附錄A 181 附錄B 241  

    [1] Binning, G., Quate, C. F. and Gerber, C.,”Atomic Force Microscope”, Physical Review Letters, Vol.56, No.6, pp.930-933 (1986).
    [2] Nanjo, H., Nony, L., Yoneya, M. and Aime, J. P.,”Simulation of Section Curve by Phase Constant Dynamic Mode Atomic Force Microscopy in Non-contact Situation”, Applied Surface Science, Vol.210, No.1, pp.49-53 (2003).
    [3] Lübben, J. F. and Johannsmann, D., “Nanoscale High-frequency Contact Mechanics Using an AFM Tip and a Quartz Crystal Resonator”, Langmuir, Vol.20, No.9, pp.3698-3703 (2004).
    [4] Tseng, A. A., Jou, S., Notargiacomo, A. and Chen, T. P., ”Recent Developments in Tip-based Nanofabrication and Its Roadmap”, Journal of Nanoscience & Nanotechnology, Vol.8, No.5, pp.2167–2186 (2008).
    [5] Fang, T. H., Weng, C. I. and Chang, J. G.,”Machining Characterization of Nano-lithography Process by Using Atomic Force Microscopy”, Nanotechnology, Vol.11, No.5, pp.181-187 (2000).
    [6] Yan, Y., Sun, T., Liang, Y. C. and Dong, S., “Investigation on AFM Based Micro/nano CNC Machining System”, International Journal of Machine Tools and Manufacture, Vol.47, No.11, pp.1651-1659 (2007).
    [7] Tseng, A. A., “A Comparison Study of Scratch and Wear Properties Using Atomic Force Microscopy”, Journal of Applied Surface Science, Vol. 256, No.13, pp.4246- 4252 (2010).
    [8] Lin, Z. C. and Huang, J. C., “The Study of Estimation Method of Cutting Force for Conical Tool Under Nanoscale Depth of Cut by Molecular Dynamics”, Nanotechnology, Vol.19, No.7, pp.115701-1 ~115701-13 (2008).
    [9] Nga, C. K., Melkotea, S. N., Rahmanb, M. and Kumar, A. S., “Experimental Study of Micro- and Nano-scale Cutting of Aluminum 7075-T6”, Machine Tools & Manufacture, Vol.46, No.9, pp. 929-936 (2006).
    [10] Peng, P., Shi, T., Liao, G., Tang, Z., and Liu, C., “Scratch of Submicron Grooves on Aluminum Film with AFM Diamond Tip”, IEEE International Conference on Nano/Micro Engineered and Molecular Systems , Shenzhen, China, Vol.74, No.31, pp.983-986 (2009).
    [11] Namba, Y. and Tsuwa, H., “Mechanism and some applications of ultra-fine finishing”, Gen Assem of CIRP, 28th, Manuf. Technol., Vol.27, No.1, pp.511-516 (1978).
    [12] Luo, Q, Ramarajan, S. and Babu, S. V.,” Modification of the Preston equation for the chemical-mechanical polishing of copper”, Thin Solid Films, Vol.335, No.7, pp.160-167 (1998).
    [13] Kwon, D., Kim, H. and Jeong, H., ”Heat and its effects to chemical mechanical polishing”, Journal of Materials Processing Technology, Vol.178, No.14, pp.82-87(2006)
    [14] Kang, Y. J., Kang, B. K. and Park, J. G.,” Effect of slurry pH on poly silicon CMP”, International Conference on Planarization/CMP Technology. Oct. 25-27 (2007).
    [15] Lin, Z. C., Huang, W. S. and Tsa, J. S.,” A study of material removal amount of sapphire wafer in application of chemical polishing with different polishing pads”, Journal of Mechanical Science and Technology, Vol.26, No.8, pp.2353-2364(2012).
    [16] Qin, K., Moudgil, B. and Park, C.W.,” A chemical mechanical polishing model incorporating both the chemical and mechanical effects”, Thin Solid Films , Vol.446, No.8, pp.277-286(2004).
    [17] Liu, Y., Zhang, K.,Wang, F.and Di, W.,” Investigation on the final polishing slurry and technique of silicon substrate in ULSI”, Microelectronic Engineering, Vol.66, No.4, pp. 438-444(2003).
    [18] Kanki, T.,Kimura, T. and Nakamura, T.,” Chemical and Mechanical Properties of Cu Surface Reaction Layers in Cu –CMP to improve Planarization”, ECS Journal of Solid State Science and Trechnology, Vol.2, No.9, pp.375-P379(2013).
    [19] 丁洋,「計算藍寶石基板之研磨液化學反應層厚度之理論模式建立與實驗分析」,碩士論文,國立台灣科技大學機械工程研究所,台北市,台灣,民國一百零三年。
    [20] “Digital Instruments Dimension™ 3100 Manual. Version 4.43B”, Digital Instruments Veeco Metrilogy Group, 2000.
    [21] 黃韋舜,「藍寶石晶圓之化學機械拋光實驗與分析」,碩士論文,國立台灣科技大學機械工程研究所,台北市,台灣,民國九十九年。
    [22] 林真真,「回歸分析」,華泰書局出版,台北市,台灣,民國八十二年七月。

    無法下載圖示 全文公開日期 2020/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE