簡易檢索 / 詳目顯示

研究生: 李駿逸
Chun-yi Lee
論文名稱: Stern Layer電壓模擬及其AFM量測-以純鎂電極板為例
Simulation and measurement with AFM of voltage of Stern Layer-an case of magnesium electrode
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 林太家
Tai-Chia Lin
黃維寧
Wei-Ning Huang
陳品銓
Pin-Chuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 88
中文關鍵詞: 電雙層原子力顯微鏡
外文關鍵詞: Stern Layer, Atomic Force Microscope(AFM)
相關次數: 點閱:234下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別以模擬及實驗方式探討電雙層與Stern Layer 內電壓分布行為,模擬使用CFD-ACE+工程分析軟體於流動、化學、電模組下進行穩態(Steady state) 的電壓分布分析,實驗使用原子力顯微鏡(Atomic force microscope, AFM)進行量測,其原理主要是將探針在掃瞄過程中所測得的力轉換為電壓值,對於往往尺寸只有數奈米甚至數埃(Å)的Stern Layer,原子力顯微鏡(AFM)具有可於液相環境中工作且成像解析度達數埃(Å)等級的優勢,實驗將於不同的電解液濃度中做多次的量測,其目的是為了改變探針掃描時所受到的凡德瓦力(Van der waals force)及靜電力(Electrostatic force),進而精準的分析出探針受力情形再轉換為電壓。
    實驗結果成功地在七種電解液濃度下,將原子力顯微鏡所測得的力與距離曲線轉換為電壓分布。結果顯示:Stern Layer的厚度皆為約0.5nm,擴散層(Diffusion Layer)厚度為1.75~8.89nm;極板表面電位為54.94~105.04mV,界達電位(Zeta Potential)為16.88~38.23mV,與大多界達電位量測相關文獻之結果有相同之處,皆為mV等級。


    The research is to study voltage distribution of Stern Layer by simulation and experiment. For simulation, we chose flow, chemical and electrical models in steady state and computed with software CFD-ACE+ . For experiment, Atomic Force Microscope(AFM) is used, because of extremely small size of stern layer(Nanometer or Angstrom), in order to get accurate force curve, we made many measurements in different concentrations of electrolyte by probe, and discussed the forces(Van der waals force and Electrostatic force) acting on probe in liquid, then transform force curve to voltage curve.
    From the experimental results in seven concentrations, the thickness
    of stern layer are almost same(About 0.5nm), and diffusion layer are 1.75~8.89nm, voltage of electrode surface are 54.94~105.04mV, Zeta Potential are 16.88~38.23mV which have same region(Below 80nm) with many relevant Literatures.

    摘要 I 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 1.3文獻回顧 3 1.3.1 電雙層理論的發展 3 1.3.2 原子力顯微鏡的發展 9 1.3.3 原子力顯微鏡於液相中的量測 10 1.3.4 文獻回顧心得 12 第二章 理論介紹 13 2.1 電雙層理論 13 2.1.1 電雙層理論模型 14 2.2 離子濃度與電雙層電壓理論 19 2.3 原子力顯微鏡理論 20 2.3.1 原子力顯微鏡構造及工作原理 21 2.3.2 原子力顯微鏡操作模式 23 2.3.3 力與距離曲線 26 2.4 DLVO理論與原子顯微鏡之量測 32 第三章 Stern Layer電壓CFD-ACE+軟體模擬 35 3.1 CFD-ACE+ 模擬分析軟體介紹 35 3.2 幾何建模(CFD-GEOM) 35 3.3 模組及參數選擇(CFD-GUI) 36 3.3.1邊界條件(Boundary condition) 37 3.4 模擬結果 38 3.5 模擬結果討論 41 第四章 實驗規劃 43 4.1 實驗目的 43 4.2 實驗儀器 43 4.2.1 液相原子力顯微鏡 43 4.2.2 探針規格 46 4.3 實驗架構 49 4.3.1 實驗設計 49 4.3.2 實驗步驟 54 第五章 實驗結果與討論 61 5.1 力與距離曲量測 61 5.1.1 探針摩擦力對電雙層電位分布之影響討論 68 5.2力與距離曲線轉換為電壓分布 70 第六章 結論與未來展望 81 6.1 結論 81 6.2 未來展望 82 參考文獻 84

    [1] 呂明泰,林俊勳,吳靖宙,張憲彰,“原子力顯微術之力−距離曲線於微管壁電雙層特性之評估”,國立成功大學醫學工程研究所
    (2005)

    [2] 楊登貴,“電滲流於微渠道中速度及溫度量測之實驗研究”,國立中山大學機械與機電工程學系碩士論文(2007)

    [3] 王冠斐,賴山強,“膠體中的物理簡介”,物理雙月刊第二十三卷第四期 482-487(2001.8)

    [4] 李克強,池明輝,唐于博,羅仕瀚,“膠體粒子對平面之電泳運動”,國立臺灣大學化學工程學系暨研究所(2005)

    [5] http://eng.thesaurus.rusnano.com/wiki/article759

    [6] http://pubs.rsc.org/en/content/articlehtml/2013/bm/c2bm00032f

    [7]Von Helmholtz H L F, Ann Physik, 1853, 89(2):211;1879,7(3):337

    [8] 吳浩青,李永舫,“電化學動力學”,科技圖書股份有限公司(2001)

    [9]Gouy G, J Phys Radium, 1910, 9(4):457

    [10]Stern O, Z Electrochem, 1924, 30:508

    [11] David C. Grahame,“The electrical double layer and the theory of electrocapillarity”, Department of Chemistry, Amherst College, Amherst, Massachusetts(1947)

    [12] Chiun-Chang Lee, Hijin Lee, Yunkyong Hyon, Tai-Chia Lin, Chun Liu,“New poisson -boltzmann type equations:one dimensional solutions ”, IMA Preprint Series # 2349(2010)

    [13] G. Binnig, C. F. Quate ,Ch. Gerber,“Atomic Force Microscope”, Physical Review Letters, Vol.56, No.9, 930-933(1986)

    [14] Y. Martin, C. C. Williams, H. K. Wickramasinghe,“Atomic force microscope-force mapping and profiling on a sub 100A ̇ scale”, J. Appl. Phys, Vol.61, No.10, 4723-4729(1987)

    [15] Q. Thong, D. Inniss, K. Kjoller, V.B. Elings,“Fractured polymer/ silica fiber surface studied by tapping mode atomic force microscopy”, Surface Science Letters , Vol.290, 688- 692 (1993)

    [16] Hans-Ju ̈rgen Butt,“Electrostatic interaction in atomic force microscopy”, Biophysical Journal, Vol.60, 777-785(1991)

    [17] V. Adrian Parsegian , David Gingell,“On the electrostatic interaction across a salt solution between two bodies bearing unequal charges”, Biophysical Journal, Vol.12, 1192-1204(1972)

    [18]Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope”, Physical Review B, Vol.45, No.19, 226-232(1992)

    [19] Hans-Ju ̈rgen Butt,“Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope”, Biophysical Journal, Vol.60, 1438-1444(1991)

    [20] Hans-Ju ̈rgen Butt,“Measuring local surface charge densities in electrolyte solutions with a scanning force microscope”, Biophysical Journal, Vol.63, 578-582(1992)

    [21] Roberto Raiteri, Massimo Grattarola, Hans- Ju ̈rgen Butt,“Measuring Electrostatic Double-Layer Forces at High Surface Potentials with the Atomic Force Microscope”, J. Phys. Chem., Vol.100, No. 41, 16700-16705(1996)

    [22] B. Cappella, G. Dietler,“Force-distance curves by atomic force microscopy”,S urface Science Reports, Vol.34, 1-104 (1999)

    [23] Michael Kappl, Hans- Ju ̈rgen Butt,“The Colloidal Probe Technique and its Application to Adhesion Force Measurements” , Part. Part. Syst. Charact. Vol.19 , 129 - 143 (2002)

    [24] 胡啟章,“電化學原理與方法”,五南圖書(2011)

    [25] 行政院國家科學委員會,微機電系統技術與應用,精密儀器發展中心(2003)

    [26] 吳宗明,呂福興,“原子力顯微鏡實作訓練教材”,五南圖書(2007)

    [27] http://www.knvs.tp.edu.tw/AFM/ch4.htm

    [28] http://bionems.cloud.ntu.edu.tw/research1-31.php

    [29] 林志成,林世明,李世元,“奈米量測技術-原子力顯微鏡在生物分子上之應用”,化學第六十七卷第一期 83-91(2009)

    [30] Hans- Ju ̈rgen Butt , Brunero Cappella , Michael Kappl, “Force measurements with the atomic force microscope: Technique, interpretation and applications”, Surface Science Reports, Vol.59 , 1–152 (2005)

    [31] Derjaguin B , Landau L. “Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes.”, Acta Physicochim, Vol.14, 633-62(1941)

    [32] E.J.W. Verwey, J.TH.G. Overbeek, “Theory of the stability of lyophobic colloids”,Chem. Rev., Vol.16(1935)

    [33] Pascale Pham, Matthieu Howorth, Anne Planat-Chrétien , Sedat Tardu,“Numerical Simulation of the Electrical Double Layer Based on the Poisson-Boltzmann Models for AC Electro-osmosis Flows”, Comsol Users Conference 2007

    [34] http://pic.ypu.edu.tw/files/11-1029-1986.php

    [35]http://www.budgetsensors.com/lang/ch/contact_mode_Al_alignment_grooves_holder_chip.html

    [36] http://brighter.myweb.hinet.net/chap3/chap3-6.htm

    [37] 李清正,“原子力顯微鏡探針與環境間作用之關係: Merp蛋白與Hg^(2+)離子系統的觀測”,國立中興大學物理研究所碩士論文(2008)

    [38]http://www.budgetsensors.com/lang/ch/contact_mode_afm_aluminium_alignment_grooves.html

    [39] Hajime Takano, Jeremy R. Kenseth, Sze-Shun Wong, Janese C. O’Brien, Marc D. Porter,“Chemical and Biochemical Analysis Using Scanning Force Microscopy”, Chemical Reviews, Vol. 99, No. 10, 2845-2890(1999)

    [40] Daniel J. Muller , Andreas Engel,“The Height of Biomolecules Measured with the Atomic Force Microscope Depends on Electrostatic Interactions”, Biophysical Journal , Vol. 73, 1633-1644(1997)

    [41] Ajit Mujumdar, Dongguang Wei, Rajesh N. Dave, Robert Pfeffer, Chang-Yu Wu,“Improvement of humidity resistance of magnesium powder using dry particle coating”, Powder Technology, Vol.140, 86-97(2004)

    [42] 林俊勳,“原子力顯微術於電極界面現象之評估與其應用”,國立成功大學醫學工程研究所碩士論文(2004)

    QR CODE