簡易檢索 / 詳目顯示

研究生: 蔡博凱
Po-Kai Tsai
論文名稱: LTE-A異質網路下以用戶位置為基礎之家用基地台傳輸功率控制與動態管理
Dynamic Management and Power Control Scheme Based on User Location for HeNB in LTE-A Heterogeneous Networks
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 鍾添曜
none
余聲旺
none
吳傳嘉
Chwan-Chia Wu
陳俊良
Jiann-Liang Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 72
中文關鍵詞: 長期演進技術升級版異質網路家用基地台功率控制
外文關鍵詞: LTE-A, heterogeneous network, HeNB, power control
相關次數: 點閱:269下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在長期演進技術升級版 (Long Term Evolution Advanced; LTE-A) 異質網路架構下,為了解決室內環境中位於死角位置訊號品質不佳和人口密集處頻譜資源不敷使用的問題,3GPP提出利用發射功率較小、成本較低廉的家用基地台 (home evolved node B; HeNB) 來彌補訊號品質不佳和頻譜資源不敷使用的問題。但是,未經事先協調與規畫的 HeNB 大規模佈建卻帶來了細胞間相互干擾及功率耗損的隱憂,於是如何減少細胞間干擾及功率耗損是一個值得探討的議題。此外,都會地區室內環境的用戶數量常會隨著時段而改變,如何在不同時段根據用戶數量有效地管理 HeNB 的開機數量,也是另一個值得探討的議題。
    本論文以大型商業建築物的室內環境為研究情境,在大量 HeNB 佈建的環境下有大量的物聯網裝置 (Internet of Things; IoT) 協助用戶定位,故用戶位置均為已知。提出一個以用戶位置為基礎的家用基地台功率控制與動態管理機制,此機制首先以用戶與基地台之間的距離做為選擇服務台的依據。其次以降低細胞間干擾為目的調整位於服務範圍重疊區域用戶的服務台。接著在不影響最遠用戶訊號品質的原則下調降基地站發射功率以更進一步減輕干擾。最後以系統整體容量為依據決定是否將服務用戶數較少的基地台關閉,並將其用戶移至其他服務台。目的是為了提升用戶通道品質、系統容量,以及降低功率耗損。
    模擬結果顯示,本論文提出的方法在用戶數量較少時,能有效改善用戶的訊號品質進而提升系統容量,且能有效降低家用基地台平均傳輸功率。但隨著用戶數量的增加,用戶訊號品質的改善效果則不明顯,但仍能有效降低基地台平均傳輸功率,減少系統的功率耗損。


    3GPP proposes to use the lower-power and lower-cost base station called home evolved node B (HeNB) in order to solve the problems of poor signal in indoor coverage hole and inadequate spectrum resources in hotspot in Long Term Evolution Advanced (LTE-A) heterogeneous network (HetNet). However, large-scale deployment of HeNBs without planning brings the problems of inter-cell interference and power consumption. Thus, how to reduce the inter-cell interference and power consumption are the important issues.
    The number of users change over time in indoor environment of urban areas. How to effectively manage the number of active HeNBs according to the number of users at different time is also an important issue.
    In this paper, we consider the indoor environment of large commercial buildings with large-scale deployment of HeNBs. There are also many IoT (Internet of Things) devices to support location services. Thus, the location of users are known. We propose the dynamic management and power control scheme based on user location for HeNB. First, users select the serving base station based on the distance between the user and adjacent HeNBs. Second, we adjust the serving base station of users located in the overlapping area in order to reduce the inter-cell interference. Third, in order to mitigate the interference, we adjust the transmission power of HeNBs only if it doesn’t decrease the signal quality of the farthest user of the HeNB. Last, we try to turn the HeNB which has less users into sleep mode based on the capacity of HeNBs and change the serving base station of users served by the HeNB in sleep mode. The purpose of last step is to increase the channel quality, system capacity and reduce the power consumption.

    The simulation results show that the proposal in this paper can improve the signal quality and increase the system capacity in the less users environment. The average transmission power of HeNBs also can be decreased. The proposal can’t improve the signal quality effectively when the the number of users increase, but it still can decrease the average transmission power of HeNBs also can be decreased.

    摘要IV ABSTRACTV 誌謝VII 目次VIII 圖目次XI 表目次XIV 第 一 章緒論1 1.1簡介1 1.2研究動機與目的2 1.3章節概要3 第 二 章LTE-A及適性地服務概述4 2.1LTE及LTE-A系統簡介4 2.1.1規格簡介4 2.1.2訊框架構9 2.1.3系統容量13 2.1.4規格演進14 2.1.5異質網路15 2.1.6傳輸介面17 2.1.7家用基地台18 2.1.8頻段分配20 2.1.9細胞間干擾22 2.2適地性服務24 2.2.1適地性服務概述24 2.2.2全球定位系統25 2.2.3室內定位25 2.3問題描述26 2.4相關研究27 第 三 章動態管理與功率控制30 3.1研究方法30 3.2系統基本架構31 3.3初始用戶分配34 3.4重疊區用戶重新分配39 3.5傳輸功率調整45 3.6動態管理基地台47 第 四 章系統模擬與結果49 4.1模擬環境與參數49 4.2評估項目51 4.3模擬結果分析與比較52 4.3.1用戶數為 50 時模擬環境52 4.3.2用戶數為 100 時模擬環境56 4.3.3用戶數為 150 時模擬環境60 4.3.4不同用戶數下的基地站系統容量64 4.3.5不同用戶數下的基地站傳輸功率65 第 五 章結論以及未來研究66 參考文獻68

    [1] 3GPP TSG RAN WG1:“Evolved Universal Terrestrial Radio Access (E-UTRA), Physical Channels and Modulation (Release 11) ” 3GPP TS 36.211, Dec. 2012
    [2] 許亨仰, “邁向全IP/扁平化架構 LTE/SAE掀行動網路新革命,” 新通訊元件雜誌, Sep. 2009.
    [3] 郭昱賢 and 林盈達, “LTE 架構、協定與效能.”
    [4] “3GPP LTE - Evolved UTRA - Radio Interface Concepts,” Available:
    http://ecee.colorado.edu/~ecen4242/LTE/radio.htm
    [5] “LTE:Physical layer Concept (Frame structure, Resource Block and Resource Element 概念),” Available:
    http://xdxdd.blogspot.tw/2012/11/ltephysical-layer-concept-frame.html
    [6] 3GPP TS 36.213 ver.13.1.1, “Physical layer procedures,” May. 2016.
    [7] “上下行架構/特性大不同 TDD/FDD-LTE各有千秋,” Available:
    http://www.mem.com.tw/article_content.asp?sn=1112020004
    [8] P. Mogensen, W. Na, I. Z. Kovacs, F. Frederiksen, A. Pokhariyal, K. I. Pedersen, T. Kolding, K. Hugl, M. Kuusela, “LTE Capacity Compared to the Shannon Bound,” 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring pp.1234-1238, Apr. 2007.
    [9] S. Kanchi, S. Sandilya, D. Bhosale, A. Pitkar and M. Gondhalekar, “Overview of LTE-A Technology,” Global High Tech Congress on Electronics (GHTCE), 2013 IEEE, pp.195-200, Nov. 2013.
    [10] “The RF challenges of LTE-Advanced,” Available:
    http://www.radiocomms.com.au/content/test-measure/article/the-rf-challenges-of-lte-advanced-1190026497
    [11] J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song and D. Malladi, “A survey on 3GPP heterogeneous networks,” IEEE Wireless Communications, pp.10-21, June 2011.
    [12] H. Kim, B. Ryu and N. Park, “Inbound Mobility Management on LTE-Advanced Femtocell Topology Using X2 Interface,” Computer Communications and Networks (ICCCN), 2011 Proceedings of 20th International Conference on, pp.1-5, July 2011.
    [13] V. Chandrasekhar, J. Andrews and A. Gatherer, “Femtocell networks: a survey,” Communications Magazine, IEEE, vol. 46, pp. 59-67, 2008.
    [14] P. Palanisamy and S. Nirmala, “Downlink interference management in femtocell networks - a comprehensive study and survey,” Information Communication and Embedded Systems (ICICES), 2013 International Conference on, pp.747 -754, 21 -22 Feb. 2013.
    [15] “LTE : Femto cell introduction,” Available:
    http://xdxdd.blogspot.tw/2012/10/ltefemto-cell-introduction.html

    [16] D. N. Knisely, T. Yoshizawa and F. Favichia, “Standardization of femtocells in 3GPP,” IEEE Communications Magazine, pp.68 -75, Sep. 2009.
    [17] G. de la Roche, A. Valcarce, D. Lopez-perez, and Z. jie, “Access control mechanisms for femtocell,” Communication magazine, IEEE, pp.33 -39, Jan. 2010.
    [18] Y. Shi, A. B. MacKenzie, L. A. DaSilva, K. Ghaboosi and M. Latva-aho, “On Resource Reuse for Cellular Networks with Femto- and Macrocell Coexistence,” Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE, pp.1 -10, Dec. 2010.
    [19] J. Zhang, H. Tian, P. Tian, Y. Huang and L. Gao, “Dynamic Frequency Reservation Scheme for Interference Coordination in LTE-Advanced Heterogeneous Networks,” Vehicular Technology Conference (VTC Spring), 2012 IEEE 75th, pp.1 -5, May. 2012.
    [20] “以LBS適地姓服務探討GPS導航應用的發展狀況,” Available:
    http://www.sogi.com.tw/talks/以LBS適地姓服務探討GPS導航應用的發展狀況/6151062
    [21] “全球定位系統,” Available:
    http://wiki.mbalib.com/zh-tw/全球定位系統
    [22] Z. Zhao and T. Kaiser, “Power control for interference management in LTE femto cell An overview.”

    [23] P. Lee, T. Lee, J. Jeong and J. Shin, “Interference management in LTE femtocell systems using fractional frequency reuse,” Advanced Communication Technology (ICACT), 2010 The 12th International Conference on, pp.1047 -1051, Feb. 2010.
    [24] M. M. Selim, M. El-Khamy and M. El-Sharkawy, “Enhanced frequency reuse schemes for interference management in LTE femtocell networks,” 2012 International Symposium on Wireless Communication Systems (ISWCS), pp.326 -330, Aug. 2012.
    [25] D. Lopez-Perez, A. Valcarce, G. de la Roche and J. Zhang, “OFDMA femtocells: A roadmap on interference avoidance,” Communications Magazine, IEEE, pp.41-48, Sep. 2009.
    [26] Z. Wang, W. Xiong, C. Dong, J. Wang and S. Li, “A novel downlink power control scheme in LTE heterogeneous network,” Computational Problem-Solving (ICCP), 2011 International Conference on, pp.241-245, Oct. 2011.
    [27] H. Claussen, L. T. W. Ho and L. G. Samuel, “Self-optimization of coverage for femtocell deployments,” Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, pp.1-6, DEC. 2011.
    [28] L. Yang, P. Wen and L. G. Samuel, “Location Based Autonomous Power Control for ICIC in LTE-A Heterogeneous Networks,” Wireless Telecommunications Symposium, 2008. WTS 2008, pp.278-285, Apr. 2008.
    [29] I. Ashraf, H.C1aussen and L.T.W. Ho, “Improving energy efliciency of femtocell base stations via user activity detection,” IEEE Wireless Communications and Networking Conference (WCNC), pp.1-5, Apr. 2010.
    [30] A. Dudnikova and D. Panno, “A fully distributed algorithm for pilot power control in LTE femtocell networks,” Wireless Days (WD), 2013 IFIP, pp.1-3, Nov. 2013.

    QR CODE