簡易檢索 / 詳目顯示

研究生: 邱繼緯
JI-WEI QIU
論文名稱: LTE-A 網路中大規模MTCDs 隨機存取前導碼碰撞問題解決方案
Solution to Preamble Collision Problem for Massive MTCDs Random Access in LTE-A Network
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 吳傳嘉
Chwan-Chia Wu
黎碧煌
Bih-Hwang Lee
陳俊良
Jiann-Liang Chen
馬奕葳
Yi-Wei Ma
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 100
中文關鍵詞: 物聯網隨機存取智慧城市機器對機器通訊設備對設備通訊
外文關鍵詞: internet of things (IoT), random access (RA), smart city, machine-to-machine communication, device-to-device communication
相關次數: 點閱:215下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著物聯網 (internet of things; IoT)的時代來臨,無線網路須提供任何設備在任意的時間連上網路傳送資料,預計在2022年將有超過120億個連接設備。

    3GPP (The 3rd Generation Partnership Project) 為了與物聯網的時代接軌,針對機器對機器 (machine-to-machine; M2M) 的通訊應用,提出機器類型通訊的長期演進技術 (long term evolution-machine type communication; LTE-M) 的新標準滿足裝置直接與基地台進行連線,達到廣泛部署、全球連通性、高服務質量 (quality of service; QoS)等需求。

    然而在現有的LTE-A網路架構下,人類類型通訊設備(human-type communication device; HTCD) 和機器類型通訊設備(machine-type communication device; MTCD) 向 基地台(base station; BS)發出連線請求時需採用隨機存取程序 (random access procedure; RA procedure)。由於實體隨機存取通道 (physical random access channel; PRACH) 的資源有限,大量MTCD的加入將造成通道壅塞,隨機存取碰撞機率大幅提高,BS回應時間變長、頻道利用率下降、頻道資源不足等問題。

    本論文針對大量MTCD發起隨機存取程序,導致通道壅塞問題進行研究,提出藉由設備對設備(device-to-device; D2D)技術,調整前導碼(preamble)分配,達到降低通道壅塞、隨機存取碰撞等問題。

    由模擬結果證明,在MTCD密集區域(三群MTCDs數量為雙倍),藉由D2D技術搭配前重新分配前導碼機制來調整通道資源的分配,可以降低隨機存取程序碰撞的機率,提升前導碼的利用率和大幅提升系統服務效能。


    With the approaching of the internet of things (IoT) era, wireless networks provide devices to connect with the network to transmit data at any time. It is expected that there will be more than 12 billion connected devices by 2022.

    In order to be in step with the IoT era, the 3rd Generation Partnership Project (3GPP) has proposed a new standard called long term evolution-machine type communication (LTE-M) for machine-to-machine (M2M) communication, which meets the needs of devices such as the direct connection with BS, wide deployment, global connectivity, and high quality of service (QoS).

    However, under the existing LTE-A network architecture, random access procedure (RA procedure) should be adapted to facilitate human-type communication device (HTCD) and machine-type communication device (MTCD) sending a connection request to the base station (BS). Because of the limited resources of physical random access channel (PRACH), the massive number of MTCDs may cause channel congestion, notable increase in probability of random access collision and BS response time, decrease in channel utilization rate, channel resources insufficiency, and so on.

    This thesis investigates the problem of channel congestion caused by massive number of MTCDs and propose a new way to adjust the preamble allocation through device-to-device (D2D) technology to reduce channel congestion and random access collisions.

    The simulation result proves that in the dense area (the number of MTCDs has been doubled), the allocation of channel resources can be adjusted by D2D technology and reallocate preamble mechanism, which can reduce the probability of RA procedure collision and improve the preamble utilization as well as the system service efficiency.

    摘要 iv Abstract v Acknowledgments vii Table of Contents viii List of Abbreviations xi List of Symbols xiii List of Figures xiv List of Tables xvii Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 Organization of Thesis 2 Chapter 2 Background and Related Works 3 2.1 LTE-A Introduction 3 2.1.1 LTE-A Architecture 4 2.1.2 Physical Layer Transmission 5 2.1.3 RA Procedure 7 2.1.4 Physical Random Access Channel Configuration Index 12 2.1.5 RA-slot 14 2.1.6 Random Access Response MAC PDU Structure 17 2.1.7 Random Backoff Mechanism 19 2.1.8 Specification Evolution 20 2.2 LTE-M2M Overview 23 2.2.1 M2M Network Architecture 24 2.2.2 M2M Application 26 2.2.3 MTCD Characteristics 26 2.3 LTE D2D 27 2.4 Related Work 30 2.5 Problem Description 42 Chapter 3 Reallocate Preamble Mechanism 43 3.1 Research Method 43 3.2 Initial Environment Setting 44 3.3 Proposed RA Procedure 47 3.3.1 Preamble Allocation 48 3.3.2 Member Procedure 48 3.3.3 Head Procedure 50 3.3.4 Reallocate Preamble Mechanism 51 3.3.5 RAR Format 55 3.4 Device-to-Device Communication 56 Chapter 4 System Simulation 58 4.1 Simulation Environment and Parameters 58 4.2 Effectiveness Evaluation Project 63 4.3 Analysis and Comparison of Simulation Results 64 4.3.1 Compare the impact of NaPRB on D2D request distribution 64 4.3.2 Compare preamble allocation mechanism with proposed-reallocate preamble mechanism based on their usage situation of preambles. 67 4.3.3 Compare standard (STD), optimal ACB, preamble allocation mechanism, proposed-reallocate preamble mechanism based on their completion time, average access delay, and drop ratio. 71 4.3.3.1 N = 50000, r = 20, NaPRB=50 71 4.3.3.2 N = 30000, r = 20, NaPRB=50 73 4.3.3.3 N = 10000, r = 20, NaPRB=50 75 Chapter 5 Conclusions and Future Works 78 References 80

    [1] 3GPP TS 23.401 V15.0.0, ‘‘General Packet Radio Service (GPRS) Enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Access’’, 2017.
    [2] 3GPP TS 36.300 V14.2.0, ‘‘Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage2’’, 2017.
    [3] ‘‘LTE:Physical layer concept (Frame structure, Resource Block and Resource Element 概念)’’, [Online]. Available: http://xdxdd.blogspot.tw/2012/11/ltephysical-layer-concept-frame.html.
    [4] A.Working, P.No, C. M.Davidson, and M. J.Santorelli, ‘‘LTE-ADVANCED:NEXT-GENERATION WIRELESS BROADBAND TECHNOLOGY’’, Law Policy, no. 10, pp. 10–22, 2010, doi: 10.1109/MWC.2010.5490974.
    [5] ‘‘LTE: Random Access Procedure’’, [Online]. Available: http://xdxdd.blogspot.tw/2012/08/lte-random-access-procedure.html.
    [6] A.Biral, M.Centenaro, A.Zanella, L.Vangelista, and M.Zorzi, ‘‘The challenges of M2M massive access in wireless cellular networks’’, Digit. Commun. Networks, vol. 1, no. 1, pp. 1–19, 2015, doi: 10.1016/j.dcan.2015.02.001.

    [7] 3GPP TS 36.211 V13.2.0, ‘‘Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 13)’’, 2016.
    [8] M. S.Ali, E.Hossain, and D. I.Kim, ‘‘LTE/LTE-A Random Access for Massive Machine-Type Communications in Smart Cities’’, IEEE Commun. Mag., vol. 55, no. 1, pp. 76–83, 2017, doi: 10.1109/MCOM.2017.1600215CM.
    [9] 3GPP TS 36.321 V15.0.0, ‘‘Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification (Release 15)’’, 2017.
    [10] S.Kanchi, S.Sandilya, D.Bhosale, A.Pitkar, and M.Gondhalekar, ‘‘Overview of LTE-A technology’’, 2013 IEEE Glob. High Tech Congr. Electron. GHTCE 2013, pp. 195–200, 2013, doi: 10.1109/GHTCE.2013.6767272.
    [11] Y.Mehmood, N.Haider, M.Imran, A.Timm-Giel, and M.Guizani, ‘‘M2M Communications in 5G: State-of-the-Art Architecture, Recent Advances, and Research Challenges’’, IEEE Commun. Mag., vol. 55, no. 9, pp. 194–201, 2017, doi: 10.1109/MCOM.2017.1600559.
    [12] K.Zheng, S.Ou, J.Alonso-Zarate, M.Dohler, F.Liu, and H.Zhu, ‘‘Challenges of massive access in highly dense LTE-advanced networks with machine-to-machine communications’’, IEEE Wirel. Commun., vol. 21, no. 3, pp. 12–18, 2014, doi: 10.1109/MWC.2014.6845044.
    [13] T.Taleb and A.Kunz, ‘‘Machine type communications in 3GPP networks: Potential, challenges, and solutions’’, IEEE Commun. Mag., vol. 50, no. 3, pp. 178–184, 2012, doi: 10.1109/MCOM.2012.6163599.
    [14] Q. Z.Shinpei Yasukawa,Hiroki Harada,Satoshi Nagata, ‘‘D2D Communications ltea release 12’’, vol. 17NO.2, 2015.
    [15] ‘‘LTE Sidelink (D2D)’’, [Online]. Available: http://spectracells.com/2018/08/31/lte-sidelink-d2d/.
    [16] M.Hasan, E.Hossain, and D.Niyato, ‘‘Random access for machine-to-machine communication in LTE-advanced networks: Issues and approaches’’, IEEE Commun. Mag., vol. 51, no. 6, pp. 86–93, 2013, doi: 10.1109/MCOM.2013.6525600.
    [17] H. S.Jang, S. M.Kim, H. S.Park, and D. K.Sung, ‘‘An Early Preamble Collision Detection Scheme Based on Tagged Preambles for Cellular M2M Random Access’’, IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 5974–5984, 2017, doi: 10.1109/TVT.2016.2646739.
    [18] A.Laya, L.Alonso, and J.Alonso-Zarate, ‘‘Efficient Contention Resolution in Highly Dense LTE Networks for Machine Type Communications’’, 2015 IEEE Glob. Commun. Conf., pp. 1–7, 2016, doi: 10.1109/glocom.2015.7417669.
    [19] K.Lee and J. W.Jang, ‘‘An efficient contention resolution scheme for massive IoT devices in random access to LTE-A Networks’’, IEEE Access, vol. 6, pp. 67118–67130, 2018, doi: 10.1109/ACCESS.2018.2876438.
    [20] C.Yoon, ‘‘Distributed queuing with preamble grouping for massive IoT devices in LTE random access’’, 2016 Int. Conf. Inf. Commun. Technol. Converg. ICTC 2016, pp. 103–105, 2016, doi: 10.1109/ICTC.2016.7763445.
    [21] S.Duan, V.Shah-Mansouri, Z.Wang, andV. W. S.Wong, ‘‘D-ACB: Adaptive Congestion Control Algorithm for Bursty M2M Traffic in LTE Networks’’, IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 9847–9861, 2016, doi: 10.1109/TVT.2016.2527601.
    [22] T. W.Huang, Y.Ren, K. C. J.Lin, andY. C.Tseng, ‘‘R-Hint: A message-efficient random access response for mMTC in 5G networks’’, IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. PIMRC, vol. 2017-Octob, pp. 1–6, 2018, doi: 10.1109/PIMRC.2017.8292268.
    [23] Kuan-Lin Yeh, ‘‘Using Preamble Allocation Mechanism in Group to Improve PRACH Congestion for Massive MTC Devices in LTE-A’’, NTUST, 2019.
    [24] 3GPP TR 37.868 V11.0.0, ‘‘Technical Specification Group Radio Access Network;Study on RAN Improvements for Machine-type Communications’’, 2017.

    QR CODE