簡易檢索 / 詳目顯示

研究生: 李恆昇
Heng-Sheng Lee
論文名稱: 多材質氣壓擠出積層製造系統之光固化樹脂加工資料庫建立
Study of Vat Photopolymer Printing Parameters Database for Multi-Material Pneumatic Extrusion Based Additive Manufacturing System
指導教授: 蔡明忠
Ming-Jong Tsai
口試委員: 江卓培
Cho-Pei Jiang
鄭逸琳
Yih-Lin Cheng
郭永麟
Yong-Lin Kuo
蔡明忠
Ming-Jong Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 85
中文關鍵詞: 積層製造後處理氣壓擠出技術光固化列印加工資料庫
外文關鍵詞: Additive manufacturing, Post processing, Pneumatic extrusion, Vat photopolymerization, Printing database
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用多材質氣壓擠出積層製造系統來建立光固化樹脂加工資料庫,硬體部分以三軸龍門式機構和CNC控制器為基底,加上多噴頭氣壓擠出模組作氣壓擠出外加DA控制器和電控比例閥來彈性控制氣壓,周邊I/O為正負壓與固化UV光源之控制。軟體部分則是結合商用切層軟體和改良過的後處理程式來處理大量的切層資料和插入加工程式,同時也提升了資料處理效能和切層資料後處理的正確率。
    依據材料特性和選定針頭尺寸後,透過固定氣壓改變機台移動速度的方式,可以量測到該氣壓下可列印出線條的極限速度,蒐集在一固定氣壓固定速度下的線徑數據。在可用範圍內針對不同氣壓與列印速度進行列印及線徑量測,就可以建立線徑與氣壓和機台移動速度的關係圖。因此在不同列印速度下,調整氣壓即可得到一致的列印線徑,並且可以轉變為切層軟體和後處理程式的列印加工資料數據庫,本研究建立三種材料之等線徑加工參數。
    本研究加入支撐結構的設計讓光固化樹脂的邊框可以維持,並且成功建立出三種列印的模式,可根據使用的材料種類的多寡(軟材、硬材、支撐材)來選取對應到的噴頭作列印,在切層軟體的設定中應用加工資料數據庫中的資料,針對欲列印的線徑選取對應的機台移動速度和氣壓,氣壓驅動之壓力可隨機台移動速度的改變作調整,最後也有利用這些參數列印一些樣品進行驗證。


    In this study, a multi-material pneumatic extrusion based additive manufacturing system is used to found a vat photopolymer printing parameters database. The hardware part is based on three-axis gantry mechanism and CNC controller with equipped multi-nozzle modules. The peripheral I/Os include positive, negative pressure extrusion and light curing source. The software part combines commercial slicing software and advanced post processing code together which can handle a large amount of slicing data and also improve the efficiency.
    Considering the characteristic of materials and selecting the dimension of nozzles, the limited velocity can be determined through the way of changing machine moving velocity in a constant air pressure. The printing parameter relation can also be obtained after the width data of the printed wire are measured from different pressure and printing speed, and it can be converted to the vat photopolymer printing parameters database. Therefore, a constant diameter can be obtained by regulating the pressure for different printing speed. The printing parameters of three materials are also constructed in this study.
    The design of support material makes the vat photopolymer’s outer perimeter can be maintained, and there are three printing modes being successfully developed in this study that can use hard, soft and support material according to the quantity of nozzles. Meanwhile, the printing parameters can be utilized in slicing software and the pressure can be adjusted based on the machine velocity. Finally, there are some samples being printed for verification.

    致謝 I 中文摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機及目的 2 1.3 研究方法與步驟 5 1.4 本文架構 5 第二章 相關文獻回顧及技術探討 7 2.1 積層製造技術發展 7 2.1.1 光聚合固化技術(Vat Photopolymerization) 8 2.1.2 材料擠製成型技術(Material Extrusion) 9 2.1.3 材料噴印成型技術(Material Jetting) 10 2.2 多噴嘴或多材質系統之研究 11 第三章 多材質氣壓擠出積層製造系統 13 3.1 系統架構 13 3.2 系統硬體介紹 16 3.3 系統軟體介紹 25 3.3. 系統之PLC指令 26 3.3.2 e-HMI系統之人機介面設計 28 3.4 CNC模擬器之運作及工件坐標系之設定 29 第四章 實驗方法及理論 33 4.1 實驗理論驗證 Poiseuille’s Law 33 4.2 材料列印參數取得 36 4.3 切層軟體參數設定 50 4.4 G-code轉換後處理程式改良與Python Pandas介紹 53 4.4.1 G-code轉換後處理程式流程圖及改良 54 第五章 實驗結果 59 5.1 實驗規劃 59 5.1.1 支撐結構設計 59 5.1.2 列印參數關係圖及海綿擦拭座標建立 62 5.2 列印模式一到三的建立 71 5.2.1 列印模式一(雙針頭+雙材) 72 5.2.2 列印模式二(三針頭+三材) 75 5.2.3 列印模式三(四針頭+三材) 77 第六章 結論與未來研究方向 80 6.1 結論 80 6.2 未來研究方向 81 參考文獻 82 附件一 系統電控圖 2 附件二 PLC程式撰寫 3

    [1] 鄭正元、江卓培、林宗翰、林榮信、蘇威年、汪佳昌、蔡明忠、賴維祥、鄭逸琳、鄭中緯、宋宜駿、陳怡文、賴信吉、吳貞興、許郁淞、陳宇恩,3D列印-積層製造技術與應用,全華圖書股份有限公司(06339),2017。
    [2] “ISO/ASTM 52900:2015 Additive manufacturing—General principles—Terminology,” ISO/TC 261 Additive manufacturing, December, 2015. Available: https://www.iso.org/standard/69669.html
    [3] 邱琬雯,“積層製造產品化技術關鍵”工研院IEK, 台灣,2017。擷取自: https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=101
    [4] Zemin Liu et al., “A 1 mm-Thick Miniatured Mobile Soft Robot With Mechanosensation and Multimodal Locomotion,” IEEE. Robotics and Automation Letters, vol. 5, no. 2, PP. 3291-3298, April, 2020. DOI: 10.1109/LRA.2020.2976306.
    [5] J. Cao, W. Liang, Y. Wang, H. P. Lee, J. Zhu and Q. Ren, “Control of a Soft Inchworm Robot With Environment Adaptation,” IEEE. Transactions on Industrial Electronics, vol. 67, no. 5, pp. 3869-3818, May, 2020. DOI: 10.1109/TIE.2019.2914619.
    [6] “Size of the global market for industrial and non-industrial robots between 2018 and 2025,” Available: https://www.statista.com/statistics/760190/worldwide-robotics-market-revenue/
    [7] “高工產研·分析”高工產業研究院,2018,擷取自: https://read01.com/zh-tw/Q3RG7Am.html#.XvNi3ygzaUk
    [8] “Overview of single-step AM processing principles for polymer materials,” World Trade Organization Technical Barriers to Trade Committee, Available: https://compass.astm.org/EDIT/html_annot.cgi?ISOASTM52900+15
    [9] “影響SLA/DLP/LCD 3D打印之速度有哪些,”擷取自: https://www.chitubox.com/zh-TW/article_indepth_17839_1_25.html
    [10] “Introduction to FDM 3D printing,” Alkaios Bournias Varotsis, Available: https://www.3dhubs.com/knowledge-base/introduction-fdm-3d-printing/
    [11] “What is Material Jetting,” All3DP, Available: https://all3dp.com/2/what-is-material-jetting-3d-printing-simply-explained/
    [12] Zhuo Li, Wei Guo, Yuayan Huang, Kanhao Zhu, Haokun Yi, Hao Wu, “On-skin graphene electrodes for large area electrophysiological monitoring and human-machine interfaces,” ELSEVIER. Carbon, vol. 164, pp. 164-170, July, 2020. DOI: 10.1016/j.carbon.2020.03.058.
    [13] Siqin Zhao, Rentao Mu, Yanxiao Ning, Qiang Fu, Xinhe Bao, “Modulating electronic structure of graphene overlayers through electrochemical intercalation,” ELSEVIER. Carbon, vol. 552, Aug., 2020. DOI: 10.1016/j.apsusc.2020.146359.
    [14] M. Alruwaili, J. A. Lopez, K. McCarthy, E. G. Reynaud, and B. J. Rodriguez, “Liquid-phase 3D bioprinting of gelatin alginate hydrogels: influence of printing parameters on hydrogel line width and layer height,” Bio-des. Manuf., vol. 2, no. 3, pp. 172-180, July, 2019. DOI: 10.1007/s42242-019-00043-w.
    [15] S. Naghieh, M. Sarker, N. Sharma, Z. Barhoumi and X. Chen, “Printability of 3D Printed Hydrogel Scaffolds: Influence of Hydrogel Composition and Printing Parameters,” Sci. Applied Sciences, vol. 10, no. 1, p. 292, 2020. DOI: 10.3390/app10010292.
    [16] E. Sodupe-Ortega, A. Sanz-Garcia, and C. Escobedo-Lucea, “Accurate calibration in multi-material 3D bioprinting for tissue engineering,” Materials, vol. 11, no. 8, p. 1402, 2018. DOI: 10.3390/ma11081402.
    [17] Z. Chen, X. Zhang, P. Chen, W. Li, K. Zhao, L. Shi, K. Liu and C. Liu, “3D multi-nozzle system with dual drives highly potential for 3D complex scaffolds with multi-biomaterials,” International Journal of Precision Engineering and Manufacturing, vol. 18, no. 5, pp. 755-761, May, 2017. DOI: 10.1007/s12541-017-0090-8.
    [18] Shi Shen et al., “Three dimensional Printing-Based Strategies for Functional Cartilage Regeneration,” Tissue Engineering, vol. 25, no. 3, June, 2019. DOI: 10.1089/ten.teb.2018.0248.
    [19] S. Song, J. Choi, Y. Park, S. Hong, J. Lee, C. Ahn, H. Choi, K. Sun, “Sodium Alginate Hydrogel-Based Bioprinting Using a Novel Multinozzle Bioprinting System,” Artificial Organs, vol. 35, no. 11, Nov, 2011. DOI: 10.1111/j.1525-1594.2011.01377.x.
    [20] S. Yang, H. Tang, C. M. Feng, J. P. Shi, J. Q. Yang, “The Research on Multi-Material 3D Vascularized Network Integrated Printing Technology,” MDPI. Micromachines, vol. 11, no. 3, Feb, 2020. DOI: 10.3390/mi11030237.
    [21] S. Jaligama, J. Kameoka, “Three-dimensional coaxial multi-nozzle device for high-rate microsphere generation,” Springer, Polymers & Biopolymers, vol. 54, no. 22, Nov, 2019. DOI: 10.1007/s10853-019-03865-2.
    [22] K.W. Chen, M.J. Tsai, H.S. Lee, “Multi-Nozzle Pneumatic Extrusion-Based Additive Manufacturing System for Printing Sensing Pads,” Inventions 2020, vol. 5, no. 3, pp. 29, July, 2020. DOI: 10.3390/inventions5030029.
    [23] 三軸平台點膠機LH-400T,Available: https://lihsi.com/dispensing-equipments/automated-dispensing-robots/3-axis-automated-glue-dispensing-robot/
    [24] 陳凱維,“多噴嘴氣壓擠出積層製造系統設計與應用於壓電式感測墊片成型之研究”碩士論文,台灣,2019。
    [25] HC控制器(M3/EtherCAT)–新代科技股份有限公司,擷取自: https://www.syntecclub.com/series.aspx?CategoryID=AutomaticProducts&SubCategoryID=DesktopAutomaticSolution&SeriesID=E2_1
    [26] FC-SLSR–新代科技股份有限公司,擷取自: https://www.syntecclub.com/series.aspx?CategoryID=AutomaticProducts&SubCategoryID=AutomationSolution&SeriesID=E1_2
    [27] Electro-pneumatic Regulator ITV1000/2000/3000,Available: https://content.smcetech.com/pdf/ITV_4017.pdf
    [28] 真空發生器作動規格表及性能表,擷取自: http://chelicc.com/data/upload/image/20180903/1535961628665658.pdf
    [29] Bruce R. Munson, Theodore H. Okiishi, Wade W. Huebsch, Alric P. Rothmayer, “Elementary Fluid Dynamics—The Bernoulli Equation,” in Fluid Mechanics, 7th ed., New York, NY, USA: Wiley, 2010, pp. 102.
    [30] EasyCure-50H規格表,擷取自: http://www.sunwheel-inc.com/uv_351.html
    [31] 氣缸系列-方銳氣動氣壓缸台灣製造,擷取自: https://www.fonray.com/DPC.html
    [32] Bruce R. Munson, Theodore H. Okiishi, Wade W. Huebsch, Alric P. Rothmayer, “Different Analysis of Fluid Flow,” in Fluid Mechanics, 7th ed., New York, NY, USA: Wiley, 2010, pp. 326.
    [33] 蔡明志,Python 程式設計大數據資料分析,碁峯資訊股份有限公司,台灣,2018。
    [34] 應用產業3D列印學堂,普立得科技有限公司,擷取自:http://3dprinting.com.tw/app/products/cat/50

    無法下載圖示 全文公開日期 2023/08/27 (校內網路)
    全文公開日期 2025/08/27 (校外網路)
    全文公開日期 2025/08/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE