簡易檢索 / 詳目顯示

研究生: 李彥嫺
Yen-Hsien Lee
論文名稱: 多層型水膠敷材之結構探討及其在傷口癒合之應用
Study of the structure of multilayered hydrogel dressing for wound healing applications.
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 鄭劍廷
Chiang-Ting Chien
李振綱
none
簡雄飛
Hsiung-Fei Chien
徐世平
none
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 137
中文關鍵詞: 傷口敷材海藻酸幾丁聚醣聚麩胺酸糖尿病
外文關鍵詞: Wound healing, Alginate, Chitosan, γ-PGA, Diabetes Mellitus
相關次數: 點閱:273下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 糖尿病患之傷口癒合不易,故其傷口敷料成為一個重要研究課題。海藻酸 (Alginate, AL) 作為傷口敷料支撐層、幾丁聚醣 (Chitosan, CS) 為結構穩定材料,及聚麩胺酸為高親水性吸收層 (Polyglutamic acid, PGA) ,所以本研究使用三種天然生醫材料建構多層型水膠敷材,並對不同組成之水膠AL-CaCl2、AL-PGA及AL-CS-PGA進行多項測試。為觀察多層型水膠結構分佈,在各組成高分子鏈接上螢光標記,於共軛聚焦顯微鏡下發現PGA和AL形成雙層結構,CS則分佈於PGA層及AL層界面,形成多層型結構。接著對多層型水膠進行保水率、膨潤度及水氣透過率等物理性質測試。在這些實驗結果發現,保水率、膨潤度及水氣透過率等,其由高至低之順序皆為AL-PGA > AL-CS-PGA > AL-CaCl2。AL-PGA因為結構成份含有大量高親水性的聚麩胺酸,故其具有最佳保溼能力 (以轉速為15000 rpm處理5分鐘後其保水率為84.6 ± 1.97 %),與較高之水氣透過率。AL-CaCl2的結構是三組中最緊密的,水膠行為 (如保水率、膨潤度及水氣透過率等) 則較AL-PGA和AL-CS-PGA來的低。AL-CS-PGA在各個測試結果的表現皆位於兩者之間,除了有良好的保水率 (轉速為15000 rpm處理5分鐘後其保水率為79.69 ± 1.05 %) 與膨潤度 (1044 ± 20 %) 外,其水氣透過率也較為緩慢可以保持傷口的濕潤。
    在水膠穩定度的評估中,運用奧氏黏度計評估多層型水膠在模擬正常生理環境下的穩定度,結果發現,在第五天時AL-PGA的黏度提高,為了了解是何種物質造成外在環境黏度的提升,因此,運用鈣離子釋放與螢光定量對多層型水膠做更深入的分析。將各組別放置在生理食鹽水環境下,其螢光定量試驗結果顯示,AL-PGA水膠在90分鐘後快速釋放出38 %的PGA,AL-CS-PGA水膠僅釋放出10 %的PGA。此外,將AL-CS-PGA水膠置於細胞培養液中觀察其釋放情形發現,水膠中各成份的釋放速度為PGA > AL > CS。生理食鹽水的鈣離子釋放結果顯示,鈣離子釋放的速度為AL-PGA > AL-CS-PGA > AL-CaCl2。三種水膠中,AL-PGA擁有最快的釋放速度 (3.8 ± 0.2 mg/g),而AL-CS-PGA則受到CS與AL和PGA結構的纏繞牽制使得釋放速度減緩 (2.2 ± 0.4 mg/g)。
    另外進行生物相容性的相關實驗如凝血性質測試、血液常規檢測、血小板吸附及蛋白質吸附等測試。在血液常規檢測的結果顯示,AL-CS-PGA水膠不會造成血液成份改變,同時相對於其他兩組AL-CaCl2與AL-PGA有促進凝血及血小板吸附的功能。此外,AL-CS-PGA與AL-PGA皆具有吸附蛋白質的能力。細胞相容性的實驗發現AL-CS-PGA不會產生細胞毒性,甚至會促進纖維母細胞的增生。根據細胞行為儀的測試結果也發現AL-CS-PGA可促進細胞遷移。
    進一步以糖尿病大白鼠做為水膠之皮膚傷口癒合測試。結果發現傷口癒合程度為AL-CS-PGA > AL-PGA > AL-CaCl2。根據組織切片染色及膠原蛋白定量得知,AL-CS-PGA較其他兩組增加較多之膠原蛋白在新生組織中的含量。以免疫染色方式也發現AL-CS-PGA也比較其他兩組更促進表皮分化。綜合上述的實驗結果證明,此多層型水膠具有發展成先進傷口敷料的潛力。


    Diabetes mellitus wound is one of the medical problems, making the development of advanced wound dressings an important issue. In this study, alginate (Alginate, AL), chitosan (chitosan, CS), and PGA (polyglutamic acid, PGA) were employed to prepare multi-layered hydrogels. For comparison, AL-CaCl2 and AL-PGA were also prepared. To observe multi-layered structure, the constituents were labeled with different fluorescent molecules. The images from confocal laser scanning microscope (CLSM) revealed that the PGA and AL formed two layers, with CS distributed in PGA layer and the interface of the AL layer. The hydrogels were subject to characterization including water retention, hydrogels stability, swelling ratio and water vapor transmission rate. The results showed that these properties of AL-CS-PGA was lower than those of AL-PGA. Biocompatibility tests were performed including blood coagulation, hematological parameters, platelet adhesion and protein adsorption. The results of hematological parameters show that AL-CS-PGA hydrogel had no adverse reaction, at the same time to promote coagulation and platelet adhesion. In addition, AL-CS-PGA and AL-PGA can adsorb serum proteins such as HSA and HPF. Furthermore, cell compatibility evaluations of these hydrogels showed no cytotoxicity response, and were able to promote proliferation of fibroblasts. Electric cell-substrate impedance sensing (ECIS) showed that AL-CS-PGA can promote cell migration.
    Effect of the hydrogels on wound healing was evaluated using diabetic mellitus rat model. The results showed that AL-CS-PGA exhibited higher rate of wound healing than conventional AL hydrogels. Tissue section staining and collagen quantification indicated that AL-CS-PGA can increase collagen regeneration without causing abnormal cells in the apoptotic response, thus helping epithelialization. These experimental results demonstrated that this multilayer hydrogel would be feasible as advanced wound dressings.

    中文摘要 I 英文摘要 (Abstract) III 誌謝 (Appreciation) V 符號索引 (Catalog of abbreviation) XII 圖索引 (Figures) XIV 表索引 (Tables) XVII 第一章 緒言 (Introduction) 1 第二章 文獻回顧 (Literature review) 4 2.1 皮膚的構造 (Skin structure) 4 2.2 傷口定義與種類 (Wound healing) 6 2.3 傷口癒合過程 (Wound healing process) 7 2.4 傷口癒合速度的影響因素 (Effect the wound healing factors) 10 2.5 糖尿病傷口 (Diabetic wounds) 10 2.6 傷口敷料條件與種類 (The conditions and types of wound dressings) 11 2.7 水膠特性 (Characteristics of hydrogel) 16 2.8 海藻酸 (Alginate) 17 2.9 幾丁聚醣 (Chitosan) 19 2.10 聚麩胺酸 (poly(γ-glutamic acid)) 20 2.11 海藻酸鈉、幾丁聚醣及聚麩胺酸研究文獻回顧 (Applications of alginate, chitosan and γ-glutamic acid) 21 第三章 以螢光觀察聚麩胺酸、海藻酸及幾丁聚醣製備之多層型水膠結構和細胞相容性探討 (Layered hydrogel of poly(γ-glutamic acid), sodium alginate, and chitosan: Fluorescence observation of structure and cytocompaibility) 24 3.1 實驗材料與設備 (Materials and equipments) 25 3.1.1實驗材料 (Materials) 25 3.1.2實驗設備 (Equipments) 25 3.2 實驗方法 (Methods) 25 3.2.1溶液製備 (Preparation of solutions) 25 3.2.2水膠製備 (Preparation of hydrogel) 25 3.2.3螢光標記固定化於高分子鏈段 (Fluorescence staining of polymers) 26 3.2.4螢光標記水膠之製備 (Preparation of fluorescence hydrogel) 29 3.2.5螢光顯微鏡觀察水膠成份分佈 (Fluorescence microscopic observation of hydrogels composition) 29 3.2.6水膠的保水性質 (Water retention capacity test) 29 3.2.7水膠穩定度評估 (Stability of hydrogel) 30 3.2.8細胞培養方法 (Cell culture study) 31 3.3 實驗結果與討論 (Results and discussion) 33 3.3.1 螢光觀察水膠成份分佈 (Fluorescence microscopic observation of hydrogels composition) 33 3.3.2保水性質評估 (Water retention capacity test) 36 3.3.3水膠穩定度評估 (Stability of hydrogel) 38 3.3.4水膠官能基與成份表 (Hydrogels composition) 44 3.3.5細胞相容性 (Biocompatibility of hydrogel) 45 3.4 結論 (Conclusion) 49 第四章 多層型水膠促進糖尿病傷口癒合之探討 (Acceleration of wound healing in diabetic rats by layered hydrogel dressing) 50 4.1 實驗材料與設備 (Materials and methods) 50 4.1.1實驗材料 (Materials) 50 4.1.2實驗設備 (Equipments) 51 4.2 實驗方法 (Methods) 51 4.2.1膨潤度試驗 (Determination of swelling ratio) 51 4.2.2水氣透過率試驗 (Water vapor transmission rate, WVTR) 52 4.2.3凝血試驗 (Determination of blood coagulation activity) 53 4.2.4血液常規測試 (Hematological parameters) 55 4.2.5蛋白質吸附試驗 (Adsorption of proteins) 56 4.2.6水膠穩定度分析 (Release of polymers from hydrogels in DMEM) 57 4.2.7細胞培養方法 (Cell culture) 58 4.2.8細胞行為分析系統 (Electric cell-substrate impedance sensing , ECISTM) 60 4.2.9動物實驗 (In vivo test) 63 4.2.10傷口癒合速度 (Wound healing rate) 65 4.2.11羫基脯胺酸定量 (Hydroxyproline analysis) 65 4.2.12馬松三色染色法 (Masson’s trichrome stain) 66 4.2.13細胞凋亡染色 (Terminal deoxynucleotidyl transferase dUTP nick end labeling, TUNEL assay) 66 4.2.14免疫組織化學染色 (Immunohistochemistry examination) 67 4.3 實驗結果與討論 (Results and discussion) 68 4.3.1膨潤度試驗 (Determination of swelling ratio) 68 4.3.2水氣透過率試驗 (Water vapor transmission rate, WVTR) 70 4.3.3凝血試驗 (Determination of blood coagulation activity) 72 4.3.4血液常規測試 (Hematological parameters) 74 4.3.5蛋白質吸附試驗 (Adsorption of proteins) 76 4.3.6水膠血小板吸附 (Adorption of platelet) 78 4.3.7水膠穩定度分析 (Release of polymers from hydrogels in DMEM) 79 4.3.8細胞行為分析系統 (Electric cell-substrate impedance sensing , ECISTM) 84 4.3.9 水膠成份通過大白鼠皮膚滲透 (Penetration of hydrogel components through rat skin) 87 4.3.10傷口癒合速度評估 (Wound healing rate) 89 4.3.11馬松三色染色 (Masson’s trichrome staining) 與羫基脯胺酸定量 (Hydroxyproline analysis) 90 4.3.12細胞凋亡染色 (Terminal deoxynucleotidyl transferase dUTP nick end labeling, TUNEL assay) 93 4.3.13免疫組織化學染色分析 (Immunohistochemical analysis/ IHC analysis) 95 4.4 結論 (Conclusion) 99 第五章 總結論 (Conclusion) 100 第六章 參考文獻 (References) 102

    [1] Stone, G. W., Witzenbichler, B., Guagliumi, G., Peruga, J. Z., Brodie, B. R., Dudek, D., Kornowski, R., Hartmann, F., Gersh, B. J., Pocock, S. J., Dangas, G., Wong, S. C., Fahy, M., Parise, H., Mehran, R., “Heparin Plus a Glycoprotein IIb/IIIa Inhibitor Versus Bivalirudin Monotherapy and Paclitaxel-eluting Stents Versus Bare-metal Stents in Acute Myocardial Infarction (HORIZONS-AMI): Final 3-year Results From a Multicentre, Randomised Controlled Trial” , The Lancet, Vol. 377, No. 9784, pp. 2193-2204 (2011)
    [2] Espicom Healthcare Intelligence (2008) The Global Market for Advanced Wound Care Products 2008.
    [3] 張慈映,「先進傷口護理產品具長期治療價格吸引力」,工業技術研究院,新竹,台灣 (2006)。
    [4] Bishop, S. M., Griffiths, B., Linnane, P. G., Lydon, M. J., and Shaw, H., “Multi layered wound dressing” , U.S. Pat. 7759537 B2 (2010)
    [5] Griffiths, B., Pritchard, D. C., Jacques, E., Bishop, S. M., and Lydon, M. J., “Multi-layered wound dressing” , U.S. Pat. 7803980 B2 (2010)
    [6] Griffiths, B., Pritchard, D. C., Jacques, E., Bishop, S. M., and Lydon, M. J., “Multi-layered wound dressing” , U.S. Pat. 6793645 B2 (2004)
    [7] Kriwet, K., and Parenteau, N. L., “In vitro Skin Models as Tools for the Testing of Topical Formulations” , Cosmetics and Toiletries, Vol. 111, pp. 93-101 (1996)
    [8] ScienceLearning,http://www.sciencelearn.org.nz/Science-Stories/Our-Senses/Sci-Media/Images/Diagram-of-human-skin-structure
    [9] LeBoit, Philip E. Trichoblastoma, Basal Cell Carcinoma, Follicular Differentiation: What should we trust? The American Journal of Dermatopathology, Vol. 25, pp. 260-236 (2003)
    [10] Gray, Mikel. Preventing, Managing Perineal Dermatitis: A Shared Goal for Wound and Continence Care. Journal of Wound Ostomy & Continence Nursing, Vol. 31, pp. S2-S12 (2004)
    [11] Eichenfield, Lawrence F, Hardaway, Christina A. Neonatal dermatology. Current Opinion in Pediatrics, Vol. 11, pp. 471 (1999)
    [12] McGuckin, M., Goldman, R., Bolton, L., and Salcido, R., “The Clinical Relevance of Microbiology in Acute and Chronic Wounds” , Advances in Skin & Wound Care, Vol. 16, pp. 12-23 (2003)
    [13] Moseley, R., Stewart, J. E., Stephens, P., Waddington, R. J., and Thomas, D. W., “Extracelluar Matrix Metabolites as Potential Biomarkers of Disease Activity in Wound Fluid: Lessons Learned From other Inflammatory Disease? ” , British Journal of Dermatology, Vol. 150, No. 3, pp. 401-403 (2004)
    [14] Dyson, M., “Advance in Wound Healing Physiology: The Comparative Perspective” , Veterinary Dermatology, Vol. 8, No. 4, pp. 227-223 (2004)
    [15] Kirsner, R. S., and Eaglstein, W. H., “The Wound Healing Process” , Dermatology Clinic, Vol. 11, pp. 629-640 (1993)
    [16] Brunner, G., and Blakytny, R., “Extracellular Regulation of TGF-β Activity in Wound Repair: Growth Factor Latency as a Sensor Mechanism for Injury” , Thromb Haemost, Vol. 92, pp. 253-261 (2004)
    [17] Blakytny, R., and Jude, E., “The Molecular Biology of Chronic Wounds and Delayed Healing in Diabetes” , Diabetic Medicine, Vol. 23, pp. 594-608 (2005)
    [18] Heldin, C. H., and Westermark, B., The Molecular and Cellular Biology of Wound Repair: Role of Platelet-derived Growth Factor In Vivo, Plenum Press, NY, pp. 249-73 (1996)
    [19] Rubin, E., and Farber, J. L., Philadephia, J.B.Lippincott Co pp. 77-89 (1988)
    [20] Singer, A. J., and Clark, R. A. F., “Cutaneous Wound Healing” , The New England Journal of Medicine, Vol. 341, pp. 738-746 (1999)
    [21] Williams, P. L., Bannister, L. H., Berry, M. M., Collins, P., Dyson, M., Ferguson, M. W. J. (eds). Edingurgh : Churchill Livingston, pp. 387-417 (1995)
    [22] McDonald, J. A., Quade, B. J., and Broekelmann, T. J., “Fibronectin’s Cell-Adhesive Domain and an Amino-Terminal Matrix Assembly Domain Participate in the Assembly into Fibroblast Pericellular Matrix” , The Journal of Biological Chemistry, Vol. 262, pp. 2957-2967 (1987)
    [23] Ladin, D. A., Garner, W. L., and Smith, D. J., “Excessive Scarring as a Consequence of Healing” , Wound Repair and Regeneration, Vol. 3, pp. 6-14 (1995)
    [24] Rovee, D. T., Kurowsky, C.A., and Labun, J., “Local Wound Environment and Epidermal Healing. Mitotic Response” , Archives of Dermatology, Vol. 106, No. 330, pp. 330-334 (1972)
    [25] Department of surgery, Division of Vascular Surgery, Beth Israel Deacibess Medical Center, Harvard Medical School, Boston, MA, USA.
    [26] Charite’ University Medicine, Joined Medical Faculty of Free University and Humboldt University, Berlin, Germany
    [27] LoGerfo, F. W., Coffman, C., Current, C., “Vascular and microvascular disease of the foot in diabetes. Implications for foot care” , The New England Journal of Medicine, Vol. 311, pp. 1615-1619 (1984)
    [28] Loomans, C. J., Koning E. J., Staal, F. J., Rookmaaker, M. B., Verseyden, C., and Boer, H. C., “Endothelial Progenitor Cell Dysfunction: A Novel Concept in the Pathogenesis of Vascular Complications of Type 1 Diabetes” , Journal of Diabetes, Vol. 53, pp. 195-199 (2004)
    [29] Lorenzi, M., Cagliero, E., and Toledo, S., “Glucose Toxicity for Human Endothelial Cells in Culture: Delayed Replication, Disturbed Cell Cycle, and Accelerated Death” , Diabetes, Vol. 34, pp. 621-627 (1985)
    [30] Espinosa, Y., Nieves, B., and Quintana, A., “Aerobic and Anaerobic Bacteria in Diabetic Foot Disease” , Anaerobe, Vol. 5, pp.405-407 (1999)
    [31] 江吉文、李均倩、王仕玲、胡秀蓉、李炳鈺。長庚藥學學報 發行人:鄧新棠 “糖連病足病變之評估和處置” 97年12月15日Vol. 15, No. 4, 2008出版
    [32] 嘉義長庚紀念醫院黃維超醫師 http://www,dr-huang.com.tw/huangword.asp#02
    [33] Lin, C. C., and Metters, A. T., “Hydrogels in Controlled Release Formulations: Network Design and Mathematical Modeling” , Advanced Drug Delivery Reviews, Vol. 58, pp. 1379-1408 (2006)
    [34] Hoffman, A. S., “Hydrogels for biomedical applications” , Advanced Drug Delivery Reviews, Vol. 43, pp. 3-12 (2002)
    [35] Gombotz, W. R., and Wee, S. F., “Protein Release From Alginate Matrices” , Advanced Drug Delivery Reviews, Vol. 31, pp. 267-285 (1998)
    [36] Drurya, J. L., Dennisb, R. G., and Mooneya, D. J., “The Tensile Properties of Alginate Hydrogels” , Biomaterials, Vol. 25, pp. 3187-3199 (2004)
    [37] Muzzarelli, R. A. A., “Genipin-crosslinked Chitosan Hydrogels as Biomedical and Pharmaceutical Aids” , Carbohydrate Polymers, Vol. 77, pp. 1-9 (2009)
    [38] Kim, I. Y., Seo, S. J., Moon, H. S., Yoo, M. K., Park, I. Y., Kim, B. C., and Cho, C. S., ”Chitosan and Its Derivatives for Tissue Engineering Applications” , Biotechnology Advances, Vol. 26, pp. 1-21 (2008)
    [39] Ribeiro, M. P., Espiga, A., Silva, D., Baptista, P., Henriques, J., Ferreira, C., Silva, J. C., Borges, J. P., Pires, E., Chaves, P., and Correia, I. J., “Development of A New Chitosan Hydrogel For Wound Dressing” , Wound Repair and Regeneration, Vol. 17, pp. 817-824 (2009)
    [40] George, M., and Abraham, T. E., “Polyionic Hydrocolloids For The Intestinal Delivery of Protein Drugs: Alginate and Chitosan - A Review” , Journal of Controlled Release, Vol. 114, pp. 1-14 (2006)
    [41] Sashiwa, H., and Aiba, S., “Chemically Modified Chitin and Chitosan as Biomaterials” , Progress In Polymer Science, Vol. 29, pp. 887-908 (2004)
    [42] Pillai, C. K. S., Paul, W., and Sharma, C. P., “Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation” , Progress In Polymer Science, Vol. 24, pp. 641-678 (2009)
    [43] Ueno, H., Mori, T., and Fujinaga, T., “Topical Dormulations and Wound Healing Applications of Chitosan” , Advanced Drug Delivery Reviews, Vol. 52, pp. 105-115 (2001)
    [44] Muzzarelli, R. A. A., “Chitins and Chitosans for the Repair of Wounded Skin, Nerve, Cartilage and Bone” , Carbohydrate Polymers, Vol. 76, pp. 167-182 (2009)
    [45] Ivanovics, G., and Bruckner, V., “Chemische und immunologische studien uber den mechanimus der milzbrandinfektion und immunitat; die chemische Struktur der Kapdelsubstanz des Milzbrandbasillus und der serologisch identischen spezifischen Substanz des Bacillus mesentericus” , Z. Immunitatsforsch, Vol. 90, pp. 304-318 (1937)
    [46] Shih, I. L., and Van, Y. T., “The Production of Poly-(γ-glutamic acid) From Microorganisms and Its Various Applications” , Bioresource Technology, Vol. 79, pp. 207-225 (2001)
    [47] Li, C., “Poly(L-glutamic acid)-anticancer Drug Conjugates” , Advanced Drug Delivery Reviews, Vol. 54, pp. 695-713 (2002)
    [48] Layman, H., Spiga, M. G., Brooks, T., Pham, S., and Webster, K. A., Andreopoulos, F. M., “ The Effect of The Controlled Release of Basic Fibroblast Growth Factor From Ionic Gelatin-based Hydrogels On Angiogenesis In a Murine Critical Limb Ischemic Model” , Biomaterials, Vol. 28, pp. 2646-2654 (2007)
    [49] Otani, O., Tabata, Y., and Ikada, Y., “A New Biological Glue From Gelatin and Poly(L-glutamic acid)” , Journal of Biomedical Materials Research, Vol. 31, pp. 157-166, (1996)
    [50] Otani, Y., Tabata, Y., and Ikada, Y., “Rapidly Curable Biological Glue Composed of Gelatin and Poly(L-glutamic acid)” , Biomaterials, Vol. 17, pp. 1987-1391 (1996)
    [51] Hsieh, C. Y., Tsai, S. P., Wang, D. M., Chang, Y. N., and Hsieh, H. J., “Preparation of γ-PGA/Chitosan Composite Tissue Engineering Matrices” , Biomaterials, Vol. 26, pp. 5617-5623 (2005)
    [52] Hsieh, C. Y., Hsieh, H. J., Liu, H. C., Wang, D. M., and Hou, L. T., “Fabrication and Release Behavior of a Novel Freeze-Gelled Chitosan/γ-PGA Scaffold as a Carrier for rhBMP-2” , Dental Materials, Vol. 22, pp. 622-629 (2006)
    [53] Li, Z., Ramay, H. R., Hauch, K. D., Xiao, D., and Zhang, M., “Chitosan-alginate Hybrid Scaffolds for Bone Tissue Engineering” , Biomaterials, Vol. 26, pp. 3919-3928 (2005)
    [54] Murakami, K., Aoki, H., Nakamura, S., Nakamura, S. I., Takikawa, M., Hanzawa, M., Kishimoto, S., Hattori, H., Tanaka, Y., Kiyosawa, T., Sato, Y., and Ishihara, M. “Hydrogel Blends of Chitin/chitosan, Fucoidan and Alginate as Healing-impaired Wound Dressings” , Biomaterials, Vol. 31, pp. 83-90 (2010)
    [55] Huang, M. H., and Yang, M. C., “Swelling and Biocompatibility of Sodium Alginate/poly(γ-glutamic acid) Hydrogels” , Polymers Advanced Technologies, Vol. 21, pp. 561-567 (2010)
    [56] Hsu, F. Y., Hung, Y. S., Liou, H. M., and Shen, C. H., “Electrospun Hyaluronate-collagen Nanofibrous Matrix and The Effects of Varying The Concentration of Hyaluronate On The Characteristics of Foreskin Fibroblast Cells” , Acta Biomaterialia, Vol. 6, pp. 2140-2147 (2010)
    [57] Lin, W. C., Yu, D. G., and Yang, M. C., “Blood Compatibility of Novel Poly (γ-glutamic acid)/polyvinyl Alcohol Hydrogels” , Colloids and Surfaces B-Biointerfaces, Vol. 47, pp. 43-49 (2006)
    [58] Bajpai, S. K., and Sharma, S., “Investigation of Swelling/Degradation Behaviour of Alginate Beads Crosslinked With Ca2+ and Ba2+ ions” , Reactive and Functional Polymers, Vol. 59, pp. 129-140 (2004)
    [59] Tsao, C. T., Chang, C. H., Lin, Y. Y., Wu, M. F., Wang, J. L., Han, J. L., and Hsieh, K. H., “Antibacterial Activity and Biocompatibility of a Chitosan-γ-poly(glutamic acid) Polyelectrolyte Complex Hydrogel” , Carbohydrate Research, Vol. 345, No. 12, pp. 1774-1780 (2010)
    [60] Giaever, I., and Keese, C. R., “Monitoring Fibroblast Behavior in Tissue Culture with an Applied Electric Field” , Proceeding of the National Academy of Sciences, Vol. 81, pp. 3761-3764 (1984)
    [61] Yates, C. C., Whaley, D., Babu, R., Zhang, J., Krishna, P., Beckman, E., Pasculle, A. W., and Wells, A., “The Effect of Multifunctional Polymer-based Gels on Wound Healing In Full Thickness Bacteria-contaminated Mouse Skin Wound Models” , Biomaterials, Vol. 28, pp. 3977-3986 (2007)
    [62] Shih, I. L., and Van, Y. T., “The Production of Poly-(γ-glutamic acid) From Microorganisms and its Various Applications” , Bioresource Technology, Vol. 79, pp. 207-225 (2001)
    [63] Hsieh, K. H., “Evaluation of Chitosan/γ-poly(glutamic acid) Polyelectrolyte Complex for Wound Dressing Materials” , Carbohydrate Polymers, Vol. 84, pp. 812-819 (2011)
    [64] Lamke, L. O., Nilsson, G. E., and Reithner, H. L., “The Evaporative Water Loss From Burns and the Water-vapour Permeability of Grafts and Artificial Membranes Used in the Treatment of Burns” , Burns, Vol. 3, pp. 159-165 (1977)
    [65] Balakrishnan, B., Mohanty, M., Umashankar, P. R., and Jayakrishnan, A., “Evaluation of an in situ Forming Hydrogel Wound Dressing Based on Oxidized Alginate and Gelatin” , Biomaterials, Vol. 26, pp. 6335-6342 (2005)
    [66] Queen, D., Gaylor, J. D., Evans, J. H., and Courtney, J. M., “The Preclinical Evaluation of The Water Vapour Transmission Rate Through Burn Wound Dressings” , Biomaterials, Vol. 8, pp. 367-371 (1987)
    [67] Lansdown, A. B., “Calcium: A Potential Central Regulator in Wound Healing in the Skin” , Wound Repair and Regeneration, Vol. 10, pp. 271-285 (2002)
    [68] Minors, D. S., “Haemostasis, Blood Platelets and Coagulation” , Anaesthesia and Intensive Care, Vol. 8, pp. 214-216 (2007)
    [69] Gorbet, M. B., and Sefton, M. V., “Biomaterial-associated Thrombosis: Roles of Coagulation Factors, Complement, Platelets and Leukocytes” , Biomaterials, Vol. 25, pp. 5681-5703 (2004)
    [70] Chang, J. J., Lin, P. J., Yang, M. C., and Chien, C. T., “Removal of Lipopolysaccharide and Reactive Oxygen Species Using Sialic Acid Immobilized Polysulfone Dialyzer” , Polymers for Advanced Technologies, Vol. 20, pp. 871-877 (2009)
    [71] Boateng, J. S., Matthews, K. H., Stevens, H. N., and Eccleston, G. M., “Wound Healing Dressings and Drug Delivery System: A Review” , Journal of Pharmaceutical Sciences, Vol. 97, pp. 2892-2923 (2008)
    [72] Grooteman, M. P., Bos, J. C., van Houte, A. J., van Limbeek, J., Schoorl, M., and Nube, M. J., “Mechanisms of Intra-dialyser Granulocyte Activation: A Sequential Dialyser Elution Study” , Nephrol Dial Transplant, Vol. 12, pp. 492-499 (1997)
    [73] Wei, Q., Li, B., Yi, N., Su, B., Yin, Z., Zhang, F., Li, J., and Zhao, C., “Improving The Blood Compatibility of Materials Surfaces Via Biomolecule-immobilized Mussel-inspired Coatings” , Journal of Biomedical Materials Research Part A, Vol. 96, pp. 38-45 (2010)
    [74] Arima, Y., Iwata, H., “Effects of Surface Functional Groups on Protein Adsorption and Subsequent Cell Adhesion Using Self-assembled monolayers” , Journal of Materials Chemistry, Vol. 17, pp. 4079-4087 (2007)
    [75] Keselowsky, B. G., Collard, D. M., Garcia, A. J., “Surface Chemistry Modulates Fibronectin Conformation and Directs Integrin Binding and Specificity to Control Cell Adhesion” , Journal of Biomedical Materials Research Part A, Vol. 66, pp. 247-259 (2003)
    [76] Dion, I., Baguey, C., Candelon, B., Monties, J. R., “Hemocompatibility of Titanium Nitride” , International Journal of Artificial Organs, Vol. 15, pp. 617-621 (1992)
    [77] Nesbitt, W. S., Giuliano, S., Kulkarni, S., Dopheide, S. M., Harper, I. S., and Jackson, S. P., “Intercellular Calcium Communication Regulates Platelet Aggregation and Thrombus Growth” , Journal of Cell Biology, Vol. 160, pp. 1151-1161 (2003)
    [78] Jackson, S. P., “The Growing Complexity of Platelet Aggregation” , Blood, Vol. 109, pp. 5087-5095 (2007)
    [79] McCoy, M. H., and Wang, E., “Use of Electric Cell-substrate Impedance Sensing as a Tool for Quantifying Cytopathic Effect in Influenza A virus Infected MDCK Cells in Real-time” , Journal of Virological Methods, Vol. 130, pp. 157-161 (2005)
    [80] Lee, Y. H., Chang, J. J., Lai, W. F., Yang, M. C., and Chien, C. T., “Layered Hydrogel of Poly(γ-glutamic acid), Sodium Alginate, and Chitosan: Fluorescence Observation of Structure and Cytocompatibility” , Colloids and Surfaces B-Biointerfaces, Vol. 86, pp. 409-413 (2011)
    [81] Xiao, C., and Luong, J. H., “On-line Monitoring of Cell Growth and Cytotoxicity Using Electric Cell-substrate Impedance Sensing (ECIS)” , Biotechnology Progress, Vol. 19, pp. 1000-1005 (2003)
    [82] Xiao, C., Lachance, B., Sunahara, G., and Luong, J. H., “Assessment of Cytotoxicity Using Electric Cell-substrate Impedance Sensing: Concentration and Time Response Function Approach” , Analytical Chemistry, Vol. 74, pp. 5748-5753 (2002)
    [83] Tsao, C. T., Chang, C. H., Lin, Y. Y., Wu, M. F., Wang, J. L., Han, J. L., and Hsieh, K. H., “Antibacterial Activity and Biocompatibility of a Chitosan-γ-poly(glutamic acid) Polyelectrolyte Complex Hydrogel” , Carbohydrate Research, Vol. 345, pp. 1774-1780 (2010)
    [84] Batheja, P., Sheihet, L., Kohn, J., Singer, A. J., Michniak-Kohn, B. “Topical Drug Delivery by a Polymeric Nanosphere Gel: Formulation optimization and In Vitro and In Vivo Skin Distribution Studies” , Journal of Controlled Release Vol. 149, pp. 159-167 (2011)
    [85] Park, C. J., Clark, S. G., Lichtensteiger, C. A., Jamison, R. D., and Johnson, A. J., “Accelerated Wound Closure of Pressure Ulcers in Aged Mice by Chitosan Scaffolds with and Without bFGF” , Acta Biomaterialia, Vol. 5, pp. 1926-1936 (2009)
    [86] Muzzarelli, R. A. A., Mattioli-Belmonte, M., Pugnaloni, A., and Biagini, G., “Biochemistry, Histology and Clinical Uses of Chitins and Chitosans in Wound Healing” , In P. Jolles, & R. A. A. Muzzarelli (Eds.), Chitin and Chitinases (pp. 251-264). Basel: Birkhauser Verlag. (1999).
    [87] Muzzarelli, R. A. A., Morganti, P., Morganti, G., Palombo, P., Palombo, M., Biagini, G., Belmonte, M. M., Giantomassi, F., Orlandi, F., and Muzzarelli, C., “Chitin Nanofibrils/chitosan Glycolate Composites as Wound Medicaments” , Carbohydrate Polymers, Vol. 70, pp. 274-284 (2007)
    [88] Muzzarelli, R. A. A., “Chitins and Chitosans for the Repair of Wounded Skin, Nerve, Cartilage and Bone” , Carbohydrate Polymers, Vol. 76, pp. 167-182 (2009)
    [89] Shi, C. M., Zhu, Y., Ran, X., Wang, M., Su, Y., and Cheng, T., “Therapeutic Potential of Chitosan and Its Derivatives in Regenerative Medicine” , Journal of Surgical Research, Vol. 133, pp. 185-192 (2006)
    [90] Ueno, H., Yamada, H., Tanaka, I., Kaba, N., Matsuura, M., Okumura, M., Kadosawa, T., and Fujinaga, T., “Accelerating Effects of Chitosan for Healing at Early PHSAe of Experimental Open Wound in Dogs” , Biomaterials, Vol. 20, pp. 1407-1414 (1999)
    [91] Ringler, D. J. Inflammation and repair. In T. C. Jones, R. D. Hunt, & N. W. King (Eds.), Veterinary Pathology, Baltimore: Williams & Wilkins, pp. 113-158 (1997)
    [92] Brown, D. L., Kao, W. W., and Greenhalgh, D. G., “Apoptosis Down-regulates Inflammation Under the Advancing Epithelial Wound Edge: Delayed Patterns in Diabetes and Improvement with Topical Growth Factor” , Surgery, Vol. 121, pp. 372-380 (1997)
    [93] Sheikh, M., Hollander, M. C., Fornance, A. J. Jr., “Role of Gadd45 in Apoptosis” , Biochemical Pharmacology, Vol. 59, pp. 43-45 (2000)
    [94] Michel, S., Schmidt, R., Shroot, B., and Reichert, U., “Morphological and Biochemical Characterization of the Cornified Envelopes From Human Epidermal Keratinocytes of Different Origin” , Journal of Investigative Dermatology, Vol. 91, pp. 11-15 (1988)
    [95] Strelkov, S. V., Herrmann, H., and Aebi, U., “Molecular Architecture of Intermediate Filaments” , Bioessays, Vol. 25, pp. 243-251 (2003)
    [96] Candi, E., Melino, G., Mei, G., Tarcsa, E., Chung, S. I., Marekov, L. N., and Steinert, P. M., “Biochemical, Structural, and Transglutaminase Substrate Properties of Human Loricrin, The Major Epidermal Cornified Cell Envelope Protein” , Journal of Biological Chemistry, Vol. 270, pp. 26382-26390 1995
    [97] Kalinin, A., Marekov, L. N., and Steinert, P. M., “Assembly of the Epidermal Cornified Cell Envelope” , Journal of Cell Science, Vol. 114, pp. 3069-3070 (2001)
    [98] Steinert, P. M., and Marekov, L. N., “The Proteins Elafin, Filaggrin, Keratin Intermediate Filaments, Loricrin, and Small Proline-rich Proteins 1 and 2 are Isodipeptide Cross-linked Components of the Human Epidermal Cornified Cell Envelope”, Journal of Biological Chemistry, Vol. 270, pp. 17702-17711 (1995)
    [99] Steinert, P. M., Kartasova, T., and Marekov, L. N., “Biochemical Evidence that Small Proline-rich Proteins and Trichohyalin Function in Epithelia by Modulation of the Biomechanical Properties of Their Cornified Cell Envelopes” , Journal of Biological Chemistry, Vol. 273, pp. 11758-11769 (1998)
    [100] Candi, E., Schmidt, R., and Melino, G., “The Cornified Envelope: A Model of Cell Death In The Skin” , Nature Reviews Molecular Cell Biology, Vol. 6, pp. 328-340 (2005)
    [101] Howling, G. I., Dettmar, P. W., Goddard, P. A., Hampson, F. C., Dornish, M., and Wood, E. J., “The Effect of Chitin and Chitosan On The Proliferation of Human Skin Fibroblasts and Keratinocytes In Vitro” , Biomaterials, Vol. 22, pp. 2959-2966 (2001)
    [102] Naseema, A., Padayatti, P. S., and Paulose, C. S., “Mechanism of Wound Healing Induced by Chitosan In Streptozotocin Diabetic Rats”, Current Science, Vol. 69, pp. 461-464 (1995)
    [103] Okamoto, Y., Minami, S., MatsuHSAhi, A., Sashiwa, H., Saimoto, H., Shigemasa, Y., et al., Application of chitin and chitosan in small animals. In C. J. Brine, P. A. Sanford, & J. P. Zikakis (Eds.), Advanced in Chitin and Chitosan , New York: Elsevier pp. 70-78 (1992)
    [104] Okamoto, Y., Shibazaki, K., Minami, S., MatsuHSAhi, A., Tanioka, S., and Shigemasa, Y., “Evaluation of Chitin and Chitosan in Open Wound Healing in Dogs”, Journal of Veterinary Medical Science, Vol. 57, pp. 851-854 (1995)

    無法下載圖示 全文公開日期 2017/05/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE