簡易檢索 / 詳目顯示

研究生: 曾迪揚
Ti-Yang Tseng
論文名稱: 有效應力不排水深開挖分析之勁度參數探討
Investigation of stiffness parameters of effective stress undrained analysis in deep excavation
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 謝百鈎
Pai-Go Hsieh
楊國鑫
Kuo-Hsin Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 235
中文關鍵詞: 深開挖小應變三軸試驗
外文關鍵詞: deep excavation, small strain, triaxial test
相關次數: 點閱:279下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

根據對深開挖之研究,可利用總應力與有效應力分析來預測土壤的應力應變行為,然真實土壤行為應該是根據有效應力原理,但綜觀有效應力分析結果卻相對不理想。所以本研究先選用台北國家企業中心(TNEC)案例做分析基礎,利用不同分析模式反覆驗證,以求得正確、合理之有效應力分析方法。
此外,本研究另外考慮40m及80m兩種不同邊界條件案例,並且分別提高不同區域內的土壤勁度參數,以便找出利用既有簡單的有效應力模型,卻能夠更真實模擬小應變區域範圍內開挖行為之特性。從分析結果顯示,若使用PLAXIS-HS model分析時,在開挖邊界底部之區域考慮較大的解壓再壓模數(Eur^ref),可模擬理想的小應變行為特性。
為了驗證數值分析之參數正確性,本研究同時針對台北沉泥質黏土進行三軸K0壓密排水於不同應力路徑下之解壓再壓試驗,並同時施作彎曲元件試驗。試驗結果顯示,在CK0D_AE_UR試驗下無應變軟化之現象,而其解壓再壓模數(Eur_sec)約等於分析提高勁度之解壓再壓模數(Eur^ref),而解壓再壓楊氏模數與50%極限強度之正割楊氏模數的比值(Eur_sec⁄E50_sec),與分析建議之3倍有段落差,另排水狀態下之波森比(ν_ur)與分析程式中所建議之0.2則相當相近。


According to previous study on deep excavation, the stress-strain behavior of soils can be predict by T.S.M. & E.S.M.. However, the real soil behavior should be based on the principle of effective stress, but result of effective stress analysis is relatively unsatisfactory. In this study, we selected the case of the Taipei National Enterprise Center (TNEC) to be an analysis basis, and then use different analytical method to obtain the correct and reasonable effective stress analysis method.
In addition, a series of parameteric study with 40m and 80m of boundary is carried out analysis with increase of stiffness in different regions is performed. A more realistic simulation result can be obtained by considering the small strain behavior. The analysis showed that the use of PLAXIS-HS model analysis, with increasing the Eur^ref at the bottom part of excavation, with result in a better result.
Finally, in order to verify the numerical analysis, this study conduct K0 consolidation drainage triaxial test (CK0D) at different stress paths with unloading and reloading. Bender element tests was performed as well. The results show that no strain softening behavior under CK0D_AE_UR test. And then, the unloading and reloading secant stiffness (Eur_sec) approximately equal to the reference unloading and reloading secant stiffness (Eur^ref) in the analysis. The ratio of unloading and reloading secant Young's modulus and the secant Young's modulus (Eur_sec⁄E50_sec) at 50% of ultimate strength is higher than the suggestion in PLAXIS. The drained Poisson’s ratio (ν_ur) is found to be close to 0.2.

中文摘要 I ABSTRACT III 致謝 V 目錄 VI 表目錄 XI 圖目錄 XIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與步驟 2 1.3 研究內容 4 第二章 文獻回顧 6 2.1 開挖引致之地盤位移特性 6 2.1.1 邊界範圍之影響 6 2.1.2 地表沉陷之影響範圍 7 2.1.3 最大地表沉陷量發生位置 8 2.1.4 最大地表沉陷量 9 2.2 小應變之行為特性 9 2.2.1 小應變之區域範圍 10 2.2.2 小應變下之應力應變行為 11 2.3 三軸壓密排水試驗 12 2.3.1 土壤之應力路徑 12 2.3.2 排水試驗之變形模數 14 2.3.3 排水試驗之應力應變行為 15 第三章 數值模擬分析 17 3.1 分析軟體介紹 17 3.1.1 莫爾庫倫模式 (Mohr Coulomb model , MC) 17 3.1.2 不排水軟弱黏土模式 (Undrained Soft Clay , USC) 19 3.1.3 土壤硬化模式 (Hardening Soil model , HS) 22 3.1.4 土壤硬化小應變模式 (Hardening Soil with small-strain stiffness model , HSS) 26 3.2 台北國家企業中心(TNEC)之案例分析 29 3.2.1 土壤參數之決定 30 3.2.2 結構材料參數之決定 34 3.2.3 分析之基本條件假設 35 3.2.4 分析模擬之結果 37 3.2.5 分析結果綜合討論 39 3.3 不同邊界之案例分析(Boundary Case) 42 3.3.1 土壤參數之決定 44 3.3.2 結構材料參數之決定 45 3.3.3 分析之基本條件假設 45 3.3.4 分析模擬之結果 46 3.3.5 分析結果綜合討論 54 3.4 小應變參數對變形行為之影響 58 3.4.1 台北國家企業中心(TNEC)之小應變參數影響 60 3.4.2 邊界案例(Boundary Case)之小應變參數影響 64 第四章 試驗計畫、設備與方法 65 4.1 試驗計畫 65 4.2 土樣來源與試驗規範 65 4.2.1 土樣來源 65 4.2.2 基本物理試驗規範 66 4.3 全自動三軸儀器設備 66 4.3.1 軸向加壓系統 67 4.3.2 壓力控制系統 67 4.3.3 局部位移之量測 68 4.3.4 其他試驗配件 69 4.3.5 試驗量測儀器之校正 70 4.4 試驗方法與內容 71 4.4.1 基本物理性質試驗 71 4.4.2 土壤相關參數之決定 71 4.4.3 三軸排水受剪速率之決定 74 4.4.4 三軸試驗之液體介質滲漏影響 75 4.4.5 三軸K0壓密試驗(CK0D test) 76 4.4.6 不同應力路徑下之排水試驗 80 4.4.7 彎曲元件試驗 81 4.5 試驗結果之計算與修正 83 第五章 試驗結果與討論 86 5.1 三軸K0壓密排水軸向壓縮解壓再壓試驗(CK0D_AC_UR) 86 5.1.1 CK0D_AC_UR 試驗之應力路徑 86 5.1.2 CK0D_AC_UR 試驗之楊氏模數 87 5.1.3 CK0D_AC_UR 試驗之解壓再壓楊氏模數 87 5.1.4 CK0D_AC_UR 試驗之排水受剪結果 87 5.2 三軸K0壓密排水軸向伸張解壓再壓試驗(CK0D_AE_UR) 88 5.2.1 CK0D_AE_UR 試驗之應力路徑 88 5.2.2 CK0D_AE_UR 試驗之楊氏模數 88 5.2.3 CK0D_AE_UR 試驗之解壓再壓楊氏模數 89 5.2.4 CK0D_AE_UR 試驗之排水受剪結果 89 5.3 彎曲元件試驗結果 90 5.4 試驗結果之綜合討論 91 第六章 結論與建議 95 6.1 結論 95 6.2 建議 99 參考文獻 204

1. Atkinson and Sallfors G. (1991), “Experimental determination of stress-strain-time characteristics in laboratory and in-situ tests”, Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, pp.915-956.
2. A. Gasparre, S. Nishimura, N. A. Minh, M. R. Coop and R. J. Jardine. (2007), “The stiffness of natural London Clay”, Geotechnique 57, No.1, pp.33-47.
3. Bishop, A.W. and Henkel, D.J. (1962), “The measurement of soil properties in the triaxial test” Edward Arnold, London.
4. Burland, J. B. & Symes, M. (1982), “A simple axial displacement gauge for use in the triaxial apparatus”, Gtotechnique 32, No. 1, pp.62-65.
5. Bowles, J. E. (1986), “Foundation of Analysis and Design”, 4th Ed, Mcgraw-Hill Company, London.
6. Burland JB. (1989), “Small is beautiful-the stiffness of soils at small strains”, Canadian Geotechnical Journal, 26(4), pp.499-516.
7. Brinkgreve, R. B. J. (2004) ,“PLAXIS Manual 8.2”.
8. Costa-Filho, L. M. (1980), “A laboratory investigation of the small strain behaviour of London clay”, PhD thesis, University of London.
9. Clayton, C.R.I. and Khatrush, S.A. (1986), “A new device for measuring local axial strains on triaxial specimens” Geotechnique 36, No.4, pp.593-597.
10. Clough, G.W. and O’Rourke, T.D. (1990), “Construction-Induced Movements of In-situ walls”, Geotech. Spec. Publ. No.25-Design and Performance of Earth Retaining Structure, American Society Civil Engineers, New York, pp.439-470.
11. Cho, W., Holman, T.P., Jung, Y.H., and Finno, R.J. (2007), “Effects of swelling during saturation in triaxial tests in clays”, Geotechnical Testing Journal, Vol.30, No.5, pp.378-386.
12. Duncan, J.M. and Chang, C.Y. (1970), “Nonlinear analysis of stress and strain in soils”, Journal of the soil mechanics and foundations division, 96 (5), pp.637-659.
13. Daramola (1978), “The influence of stress history on the deformations of sand”, PhD thesis, University of London.
14. Dyvik, R. and Madshus,C. (1985), “Lab Measurement of Gmax Using Bender Element”, Proc. Of Conf. Adv. Art of Testing Soil Under Cyclic Conditions, ASCE, New York, pp.186-196.
15. Dennis Waterman (2009), “CG1-7 Geometry and Mesh selection” , Gold Coast , Australia.
16. E. Ibraim, and H.Di. Benedetto (2005), “New Local System of Measurement of Axial Strains for Triaxial Apparatus Using LVDT”, Geotechnical Testing Journal, Vol.28, No.5.
17. Goto, S., Tatsuoka, F., Shibuya, S., Kim, Y. and Sato, T. (1991), “A simple gauge for local small strain meas. in laboratory”, Soils and Found. 31, 1, pp.169-180.
18. Hardin, B.O., and Black, W.L. (1969), “Vibration modulus of normally consolidated clay (closure)”, Journal of the Soil Mechanics and Foundations Division, ASCE 95:6, pp.1531-1537.
19. Hardin, B.O. and Drnevich, V.P. (1972a), “Shear modulus and damping in soils: Measurement and parameter effects”, Journal of Soil Mechanics and Foundations, Division, ASCE,98(6): pp.603-624.
20. Hardin, B.O. and Drnevich, V.P. (1972b), “Shear modulus and damping in soils: Design equations and curves”, Journal of Soil Mechanics and Foundations Division, ASCE. 98(7): pp.667-692.
21. Hsieh, P. G. and Ou, C. Y. , (2009), “Development of the Undrained Soft Clay Model with Small Strain Characteristics”.
22. Hsieh, P. G. and Ou, C. Y. , (2011), “Analysis of nonlinear stress and strain in clay under the undrained condition”, Journal of Mechanics, Vol. 27, No. 2, pp.201-213.
23. Hsieh, P. G. and Ou, C. Y. , (2012), “Analysis of deep excavations in clay under the undrained and plane strain condition with small strain characteristics” Journal of the Chinese Institute of Engineers, Vol. 35, No. 5.
24. Janbu, J. (1963), “Soil Compressibility as Determined by Oedometer and TriaxialTests”, Proc. ECSMFE Wiesbaden, Vol. 1, pp.19-25.
25. Jardine, R.J., Symes, M.J., and Burland J.B. (1984), “The measurement of soil stiffness in the triaxial apparatus”, Geotechnique, Vol. 34, No. 3, pp.323-340.
26. Jardine, R.J. (1992), “Some observations on the kinematic nature of soil stiffness”, Soils and foundations, 32 (2), pp.111-124.
27. J.A.Santos & A.Gomes Correia (2001), “Validation of an elastoplastic model to predict secant shear modulus of natural soils by experimental results”.
28. Kondner, R.L. (1963), “A Hyperbolic Stress Strain Formulation for Sands”, 2. Pan. Am. ICOSFE Brazil, Vol. 1, pp. 289-324.
29. Kung, T.C. and Ou, C.Y. (2004), “Stress-strain characteristics of Taipei silty clay at small strain”, Journal of the Chinese institute of engineers, 27 (7), pp.1077-1080.
30. Kung, G.T.C. (2007), “Equipment and testing procedures for small strain triaxial tests”, Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A 30(4): pp.579–591.
31. Kung, T.C., Ou, C.Y., and Juang, C.H. (2009), “Modeling small-strain behavior of Taipei clays for finite element analysis of braced excavations”, Computers and geotechnics, 36 (1-2), pp.304-319.
32. Kalaiarasi and C. Vipulanandan (2010), “Parametric study of stage excavation using the finite element method”, CIGMAT-2010 Conference & Exhibition.
33. Ladd, C. C. (1964), “Stress-Strain Modulus of Clay in Undrained Shear”, Journal of The Soil Mechanics and Foundations Division, ASCE, Vol. 90, No. SM5, pp.103-132.
34. Lambe, T.W. and Whitman, R.V. (1969), “Soil Mechanics”, John Wiley & Son, New York.
35. Lim Aswin, Ou, C. Y. , and Hsieh, P. G. (2010), “Evaluation of Clay Constitutive Models For Analysis of Deep Excavation Under Undrained Conditions”, Journal of Geotechnical Engineering, Vol. 5, No. 1, pp.9-20.
36. Mana, A. I. and Clough, G. W. (1981), “Prediction of Movements for Braced Cut in Clay”, Journal of Geotechnical Engineering Division, ASCE, Vol. 107, No. 6, pp.759-777.
37. Milligan, G. P. (1983), “Soil Deformation Near Anchored Sheet-Pile Wall”, Canadian Geotechnical Journal, Vol. 25, No. 1, pp. 41-55.
38. Nicholson, D. P. (1987), “The Design and Performance of the Retaining Wall at Newton Station”, Proceeding of Singapore Mass Rapid Transit Conference, Singapore, pp.147-154.
39. Ng, C.W.W., Pun, W.K., and Pang, R.P.L. (2000), “Small strain stiffness of natural granitic saprolite in Hong Kong”, Journal of geotechnical and geoenvironmental engineering, 126 (9), pp.819-833.
40. Ou, C.Y., Hsieh, P.G., and Chiou, D.C. (1993), “Characteristics of Ground Surface Settlement during Excavation”, Canadian Geotechnical Journal, Vol. 36, pp.210-223.
41. Ou, C. Y., Liao, J. Tang. , and Lin, H. D. (1998), “Performance of diaphragm wall constructed using Top-Down method”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 9, pp.798-808.
42. Ou, C. Y. and Hsieh, P. G. (1998), “Shape of Ground Surface Settlement Profiles Caused by Excavation”, Canadian Geotechnical Journal, Vol. 35, No. 5, pp.1004-1017.
43. Peck, R. B. (1969), “Deep Excavation and Tunneling in soft ground”, Proceeding of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, State-of-the-Art Volume, pp.225-290.
44. Pennington, D.S., Nash, D.F.T., and Lings, M.L. (2001), “Horizontally Mounted Bender Elements for Measuring Anisotropic Shear Moduli in Triaxial Clay Specimens”, Geotechnical Testing Journal, Vol.47, No.2, pp.133-144.
45. Skempton, A. W. (1954), “The pore-pressure coefficients A and B”, Geotechnique 4, No. 4, pp.143-147.
46. Serge Leroueil, Francois Tavenas, Pierre La Rochelle, and Michel Tremblay (1988), “Influence of filter paper and leakage on triaxial testing”, Advanced TriaxialTesting of Soil and Rock.
47. Smith, P.R. , Jardine, R.J., and Hight, D.W. (1992), “The Yielding of Bothkennar clay”, Geotechnique 42, No. 2, pp.257-274.
48. Shibuya, S., and Mitachi, T. (1997), “Development of a fully digitized triaxial apparatus for testing soils and soft rocks”, Geotechnical Engineering, SEAGS, Vol. 28, No. 2, pp. 183-207.
49. Santagata, M.C. (1998), “Factors affecting the initial stiffness and stiffness degradation of cohesive soils”, Dissertation(PhD), Department of Civil and Environment Engineering, MIT, Cambridge, MA.
50. Schanz, T., Vermeer,P. A. (1998), “Special issue on Pre-failure deformation behaviour of geomaterials”, Geotechnique 48, pp.383-387.
51. PLAXIS (2011), “2D2011-Material Models Manual”.
52. Terzaghi K. (1925), “Erdbaumechanik auf bodenphysikalisher grundlage. Leipzig: Franz Deuticke”.
53. Toshihisa Adachi, T., Oka, F., Hirata, T., Hashimoto, T., Nagaya, J., Mimura, M. and Pradhan, B.S. (1995), “Stress-strain behavior and yielding characteristics of Eastern Osaka Clay”, Soils and Foundations, Vol. 35, No3, pp.1-13.
54. Teng, F. C. (2010), “Prediction of ground movement induced by excavation using the uumerical method with the consideration of inherent stiffness anisotropy”, Ph.D. Dissertation, National Taiwan University of Science and Technology, Taipei, R.O.C..
55. Von Soos, P. (1980), “Properties of Soil and Rock (in German)”, In: Grund bautaschenbuch Part 4, Edition 4, Ernst & Sohn, Berlin.
56. Wood, D.M. (1990), “Soil behavior and critical state soil mechanics”, Cambridge, MA: Cambridge University Press.
57. Wanjei Cho, and Richard J. Finno (2010), “Stress-Strain Responses of Block samples of Compressible Chicago Glacial Clays”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, pp.178-188.
58. 吳宗憲、歐章煜、曾振榮,「以Cam-Clay彈塑性模式預測土壤之應力應變行為」,中國土木水利工程學刊,第七卷,第一期,第95-100頁。
59. 廖瑞堂(1996),「逆打深開挖之行為研究」,國立台灣科技大學營建工程系博士學位論文。
60. 秦中天、劉泉枝(1997),「台北粉質粘土體積變化與不排水行為」,中國土木水利工程學刊,第九卷,第四期,第665-678頁。
61. 陳昭男(1997),「台北沉泥質黏土之降伏特性探討」,國立台灣工業技術學院營建工程技術研究所碩士學位論文。
62. 謝百鈎(1999),「黏土層開挖引致地盤移動之預測」,國立台灣科技大學營建工程系博士學位論文。
63. 劉泉枝(1999),「台北黏土有效應力模式之研究」,國立台灣科技大學營建工程系博士學位論文。
64. 高明宏(2001),「台北沉泥質黏土小應變之不排水勁度模數之量測」,國立台灣科技大學營建工程系碩士學位論文。
65. 歐章煜(2002),「深開挖工程-分析設計理論與實務」,科技圖書。
66. 龔東慶、歐章煜(2003),「土壤小應變三軸試驗之發展與應用」,地工技術,第96期,第5-16頁。
67. 龔東慶(2003),「考慮台北沉泥質黏土小應變行為之深開挖地表沉陷分析」,國立台灣科技大學營建工程系博士學位論文。
68. 段筱玫(2005),「軟弱粘土深開挖沉陷影響範圍之研究」,國立台灣科技大學營建工程系碩士學位論文。
69. 鄧福宸(2005),「異向性小應變三軸試驗儀之研發」,國立台灣科技大學營建工程系碩士學位論文。
70. 伊穎锋、施建勇(2005),「小應變範圍內土體力學特性的實驗研究」,西部探礦工程,第112期,第14-16頁。
71. 吳時選(2006),「地盤改良於鄰房保護之分析研究」,國立台灣科技大學營建工程系碩士學位論文。
72. 莊智翔(2008),「有限元素開挖分析結果受網格邊界影響之探討」,國立台灣科技大學營建工程系碩士學位論文。
73. 褚 峰、李永盛、梁发云、李彦东(2010),「土体小应变条件下紧邻地铁枢纽的超深基坑变形特性数值分析」,岩石力学与工程学报,第29卷,增1。
74. 陳欣儀(2011),「探討不同應力路徑下台北黏土之不排水勁度劣化行為」,國立台灣科技大學營建工程系碩士學位論文。
75. 三力技術工程顧問股份有限公司(2012),「國泰民生建國都市更新案地基調查及基礎分析報告」。

QR CODE