簡易檢索 / 詳目顯示

研究生: 林育呈
Yu-Cheng Lin
論文名稱: 分區開挖對深開挖連續壁體變形之研究
A Study of the Zoned Excavation on the Wall Deflection in Deep Excavations
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 謝百鈎
林宏達
鄧福宸
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 94
中文關鍵詞: 分區開挖三維分析深開挖壁體變形
外文關鍵詞: Zoned excavation, Three-dimensional analysis, Deep excavation, Wall deflection
相關次數: 點閱:234下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了瞭解分區開挖在深開挖工程對連續壁體變位的影響,本研究利用三向度有限元素軟體PLAXIS 3D(2017)進行模擬分析;首先進行參數研究來瞭解控制分區開挖壁體變形的因素為何,從而得知分區開挖的變形機制。再採用兩個不同的分區開挖案例來分析並驗證分區開挖的變形機制,分別為上海南地鐵站購物中心案及仲盛世界商城案。上海南地鐵站購物中心案從施工開始至結束採用6區開挖且開挖深度為14.7公尺,地層主要由上海軟弱黏土組成;仲盛世界商城案在第一個開挖階段採用周圍11區開挖,開挖深度為14.8公尺,地層也是由上海軟弱黏土所組成。藉由上述的實際案例進行回饋分析,並依據現地監測資料驗證其合理性,由於上述兩案例開挖特性迥異,分區開挖對連續壁變位影響並不相同,本研究藉由分區開挖機制來瞭解其影響原因。
    研究結果顯示,分區開挖對連續壁體變位的主要機制為足夠的支撐勁度導致開挖時連續壁體在支撐位置造成旋轉,使得最大連續壁體變形移動至開挖表面的位置。而大部分提出分區開挖效應的文章內,皆是在相同的支撐勁度下比較分區開挖與未分區開挖的差異,由分區開挖機制可得知在相同的支撐勁度下,會因連續壁體旋轉而產生相同的連續壁體變形增量。且因分區開挖之開挖寬度皆不小,使開挖後之開挖區內連續壁體達到平面應變狀態,而使得在開挖區內中央仍然產生大量壁體變形。由研究成果顯示,得知分區開挖並無法有效抑制連續壁體的變形。


    The zoned excavation is commonly used to mitigate the impact of deep excavation on adjacent asset. Regardless of its broad application in urban area, the mechanisms of the zoned excavation still remain unclear. The present study aims to identify the key factor dominating the wall deflection by carrying out the parametric study. In addition to that, case study is also performed for verification purpose in conjunction with available field measurement.
    It was found that the wall rotation occurs at the slab/support level, where shows the comparatively large stiffness. The maximum wall deflection is, in this case, observed at the excavation surface level. The majority of the existing studies tend to adopt identical support stiffness in regards to wall restraining effects among zoned and unzoned excavation. As a consequence, the maximum wall deflection will be the same. In general, the zoned excavation spans considerably and thus the diaphragm wall reaches plane-strain condition after excavation. A large wall deflection occurs at the center part of excavation zone accordingly. Based on the results observed, the zoned excavation cannot effectively restrain the diaphragm wall deflection.

    中文摘要 I ABSTRACT II ACKNOWLEDGMENT III TABLE OF CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII NOMENCLATURE X CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Objectives 2 1.3 Thesis structure 2 CHAPTER 2 LITERATURE REVIEW 3 2.1 Introduction 3 2.2 The characteristics of wall deflection induced by excavation 3 2.3 The characteristics of the zoned excavation in deep excavation 9 2.4 Soil constitutive models 18 2.5 Three-dimensional deformation characteristics 18 2.6 Summary 21 CHAPTER 3 PARAMETRIC STUDIES 23 3.1 Introduction 23 3.2 Analysis models 24 3.2.1 The Hardening Soil model for modeling soil 24 3.2.2 The linear elastic model for modeling structure element 26 3.2.3 Model geometry, mesh and excavation sequence 27 3.3 Effect of number of excavation zones 31 3.4 Effect of the stiffness of the support system 34 3.5 Effect of the thickness of diaphragm wall 36 3.6 Effect of the sequence of zoned excavation 38 3.7 The mechanism of zoned excavation 40 CHAPTER 4 VERIFICATION OF MECHANISM OF ZONED EXCAVATION 49 4.1 Introduction 49 4.2 Deep excavation case: Shopping center of Shanghai South Railway Station 50 4.2.1 Project overview 50 4.2.2 Subsurface soils profile and material parameters 52 4.2.3 Analysis results and discussions for Shanghai shopping center 55 4.3 Over-sized excavation case: Zhongsheng Shopping Mall 58 4.3.1 Project overview 58 4.3.2 Three-dimensional finite element analysis 62 4.3.3 Subsurface soils profile and material parameters 65 4.3.4 Analysis results and discussions for Zhongsheng Shopping Mall 67 4.4 Discussion 73 CHAPTER 5 CONCLUSION AND FUTURE WORK 75 5.1 Conclusions 75 5.2 Future work 76 REFERENCES 77

    [1] ACI Committee 318 (1995) Building code requirements for structural concrete (ACI 318-95) and commentary (ACI 318R-95). American Concrete Institute (ACI), Farmington Hills.
    [2] Brinkgreve R. B. J., Kumarswamy S., Swolfs W. M., Foria F. (2017) PLAXIS 3D Manual. Delft, Nertherlands, PLAXIS.
    [3] Calvello, M., & Finno, R. J. (2004). Selecting parameters to optimize in model calibration by inverse analysis. Computers and Geotechnics, 31(5), 410-424.
    [4] Clough, G. W. & O’Rourke, T. D. (1990). Construction induced movements of in situ walls. Design and performance of earth retaining structures, 439-470.
    [5] Finno, R. J., Blackburn, J. T., & Roboski, J. F. (2007). Three-dimensional effects for supported excavations in clay. Journal of Geotechnical and Geoenvironmental Engineering, 133(1), 30-36.
    [6] Hou, Y. M., Wang, J. H., & Zhang, L. L. (2009). Finite-element modeling of a complex deep excavation in Shanghai. Acta Geotechnica, 4(1), 7-16.
    [7] Hou, Y. M., Wang, J. H., & Jeng, D. S. (2011). Three-dimensional deformation behavior of an over-sized excavation in Shanghai clay. Geotechnical Engineering Journal of the SEAGS&AGSSEA, 42(3), 22-29.
    [8] Hsieh, P. G. (1999). Prediction of Ground movements cause by deep excavation in clay, Ph.D. Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [9] Hsiung, B. C. B., Yang, K. H., Aila, W., & Hung, C. (2016). Three-dimensional effects of a deep excavation on wall deflections in loose to medium dense sands. Computers and Geotechnics, 80, 138-151.
    [10] Jaky, J. (1944). The coefficient of earth pressure at rest. J. of the Society of Hungarian Architects and Engineers, 355-358. (In Hungarian)
    [11] Khoiri, M., & Ou, C. Y. (2013). Evaluation of deformation parameter for deep excavation in sand through case histories. Computers and Geotechnics, 47, 57-67.
    [12] Li, D., Li, Z., & Tang, D. (2015). Three-dimensional effects on deformation of deep excavations. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 168(6), 551-562.
    [13] Lim, A., Ou, C. Y., & Hsieh, P. G. (2010). Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions. Journal of GeoEngineering, 5(1), 9-20.
    [14] Lim, A., & Ou, C. Y. (2017). Stress paths in deep excavations under undrained conditions and its influence on deformation analysis. Tunnelling and Underground Space Technology, 63, 118-132.
    [15] Ladd C.C., Foott R., Ishihara K., Schlosser F., Poulos H.G. (1977) Stress-deformation and strength characteristics. Proceedings of the 9th international conference on soil mechanics and foundation engineering (2):421-494:Tokyo
    [16] Ng, C. W. W., Hong, Y., Liu, G. B., & Liu, T. (2012). Ground deformations and soil-structure interaction of a multi-propped excavation in Shanghai soft clays. Géotechnique, 62(10), 907.
    [17] Ou, C. Y., Hsieh, P. G., & Chiou, D. C. (1993). Characteristics of ground surface settlement during excavation. Canadian geotechnical journal, 30(5), 758-767.
    [18] Ou, C. Y., Chiou, D. C., & Wu, T. S. (1996). Three-dimensional finite element analysis of deep excavations. Journal of Geotechnical Engineering, 122(5), 337-345.
    [19] Ou, C. Y., Shiau, B. Y., & Wang, I. W. (2000). Three-dimensional deformation behavior of the Taipei National Enterprise Center (TNEC) excavation case history. Canadian Geotechnical Journal, 37(2), 438-448.
    [20] Ou, C. Y. (2006). Deep Excavation: Theory and Practice. Taylor and Francis: London.
    [21] Ou, C. Y. (2017). 進階深開挖工程分析與設計。
    [22] Schanz, T. (1999). Formulation and verification of the Hardening-Soil Model. RBJ Brinkgreve, Beyond 2000 in Computational Geotechnics, 281-290.

    QR CODE