簡易檢索 / 詳目顯示

研究生: 李健銘
Jian-Ming Li
論文名稱: 二硫化釕薄膜之雙極式電阻式記憶體
Ruthenium Disulfide Thin Film Based Bipolar Resistive Switching Memory
指導教授: 周賢鎧
Shyankay Jou
口試委員: 黃柏仁
陳詩芸
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 162
中文關鍵詞: RuS2薄膜電阻式記憶體硫空缺界面型導電機構金屬燈絲
外文關鍵詞: RuS2 thin film, resistive memory, sulfur vacancy, interface-type conduction mechanism, metallic filament
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以二硫化釕(Ruthenium disulfide, RuS2)薄膜為介電層應用於電阻式記憶體,製作Ti/RuS2/Ru和Ni/RuS2/Ru元件並比較其電性、切換機構與傳導機制等方面之差異。
Ti/RuS2/Ru元件在電性量測時具有雙極式的電阻切換行為,且在Endurance測試中展現約25倍之開關比。元件在LRS和HRS時皆符合普爾-法蘭克發射機制。在不同電極面積測試中LRS和HRS的電阻值皆會隨電極面積增加而減少,說明此元件屬於界面型導電機構。在升溫測試中LRS和HRS的電阻值會隨溫度升高而下降,為半導體性質,推測元件不是利用燈絲來進行導電,而是利用調整界面能障高低來進行高低電阻態的切換。
Ni/RuS2/Ru元件在電性量測時也具有雙極式的電阻切換行為,且在Endurance測試中展現約10倍之開關比。元件在LRS時皆符合歐姆傳導機制,而在HRS時則符合普爾-法蘭克發射機制。在不同電極面積測試中LRS和HRS的電阻值不隨電極面積改變,說明在LRS是藉由導電燈絲來進行傳導。在升溫測試中HRS的電阻值會隨溫度升高而下降,為半導體性質;LRS的電阻值則會隨溫度升高而增加,為金屬性質,計算之α值與Ni金屬較為接近,因此推測此元件在LRS時是以Ni金屬燈絲作為主要導電燈絲路徑。
Ti/RuS2/Ru元件在I-V量測時僅需0.75 V就可以切換至LRS,-0.85 V切換至HRS;Ni/RuS2/Ru元件則需要1.4 V切換才能至LRS,-1 V切換至HRS,代表界面型導電機構比起金屬導電燈絲機構僅需更小之電壓驅動元件,且只有在界面型導電機構中成功模擬神經元突觸的仿生特性,實現連續電導阻態特性。會有機構上的不同是取決於上電極有無與RuS2薄膜形成中間層,造成RuS2薄膜中的硫空缺增加,有足夠的硫空缺才可調整上電極與RuS2薄膜之間的界面能障高度並進行高低電阻態切換,達成界面型導電機構。


This study applies ruthenium disulfide (RuS2) thin film as the dielectric layer for resistive memory devices. Ti/RuS2/Ru and Ni/RuS2/Ru devices were fabricated, and their electrical characteristics, switching mechanisms, and conduction mechanisms were compared.
The Ti/RuS2/Ru device exhibited bipolar resistive switching behavior during electrical characterization and showed an on/off ratio of around 25 in endurance tests. The device's low resistance state (LRS) and high resistance state (HRS) both followed the Poole-Frenkel emission mechanism. In tests with different electrode areas, the resistance values of both LRS and HRS decreased as the electrode area increased, indicating an interface-type conduction mechanism. In temperature-dependent tests, the resistance values of both LRS and HRS decreased with increasing temperature, suggesting semiconductor-like behavior and implying that the device does not rely on filamentary conduction but rather on modulation of the interface barrier height to achieve resistive switching.
The Ni/RuS2/Ru device also exhibited bipolar resistive switching, with an on/off ratio of around 10 in endurance tests. The LRS followed an ohmic conduction mechanism, while the HRS followed the Poole-Frenkel emission mechanism. The resistance values of both LRS and HRS did not vary with electrode area, suggesting that the LRS is dominated by metallic filamentary conduction. In temperature-dependent tests, the HRS resistance decreased with increasing temperature (semiconductor-like), while the LRS resistance increased with temperature (metallic-like), with the extracted temperature coefficient (α) close to that of Ni, indicating that the main conductive filament in the LRS is likely a Ni metal filament.
Compared to the Ni/RuS2/Ru device, the Ti/RuS2/Ru device requires lower switching voltages (0.75 V to LRS, -0.85 V to HRS) than the Ni/RuS2/Ru device (1.4 V to LRS, -1 V to HRS), indicating that the interface-type conduction mechanism requires lower operating voltages than the metallic filament mechanism. Only the interface-type conduction mechanism successfully mimics the analog synaptic behavior of biological neurons. This difference in mechanism is determined by whether there is an interfacial layer formed between the top electrode and the RuS2 film, which can modulate the sulfur vacancy concentration in the RuS2 film and thus the interface barrier height, enabling the interface-type conduction mechanism.

摘要 ................................................................................................................................... I Abstract ............................................................................................................................. II 目錄 .................................................................................................................................. V 圖目錄 .............................................................................................................................. X 表目錄 ......................................................................................................................... XVI 第一章 前言 .................................................................................................................... 1 第二章 文獻回顧 ............................................................................................................ 2 2.1 記憶體簡介 ....................................................................................................... 2 2.1.1 鐵電式記憶體(Ferroelectric Memory) ............................................. 3 2.1.2 相變化式記憶體(Phase Change Memory) ....................................... 3 2.1.3 磁阻式記憶體(Magnetoresistive RAM) .......................................... 4 2.1.4 電阻式記憶體(Resistive RAM) ....................................................... 5 2.1.4.1 單極式電阻切換(Unipolar Resistive Switching) .................. 6 2.1.4.2 雙極式電阻切換(Bipolar Resistive Switching) .................... 6 2.2 電阻式記憶體切換機構 ................................................................................... 7 2.2.1 導電燈絲機構(Filamentary Conducting Path) ................................. 7 2.2.2 界面型導電機構(Interface-Type Path) ............................................. 8 2.3 漏電流導電機制 .............................................................................................. 11 2.3.1 普爾-法蘭克發射(Poole-Frenkel Emission) .......................... 12 2.3.2 空間電荷限制傳導(Space-Charge-Limited Conduction) ...... 13 2.3.3 歐姆傳導(Ohmic Conduction) ................................................ 14 2.3.4 跳躍傳導(Hopping Conduction) ............................................ 15 2.3.5蕭特基發射(Schottky Emission) ............................................. 16 2.3.6傅勒-諾德翰穿隧(Fowler-Nordheim Tunneling) .................... 17 2.4 電阻式記憶體應用於仿生技術 ..................................................................... 18 2.4.1電阻式記憶體元件的多重阻態特性(Multi-level Resistance Characteristics) .................................................................................... 19 2.4.2電阻式記憶體元件的連續電導阻態特性(Multi-level Consecutive Conductance Resistance Characteristics) ............................................ 20 2.5 二硫化釕之電阻切換相關研究 ..................................................................... 23 2.5.1 二硫化釕基本性質 ...................................................................... 24 2.5.2 二硫化釕薄膜製備以及材料分析 .............................................. 24 2.5.3 金屬硫化物電阻式記憶體之電極、傳導、切換機制 .............. 28 2.5.4 和本論文相同金屬導電燈絲機構、界面型導電機構之氧化物電阻式記憶體 ............................................................................................ 39 2.6 研究動機 ......................................................................................................... 43 第三章 實驗方法與實驗儀器 ...................................................................................... 44 3.1 電阻式記憶體實驗流程與製備 ..................................................................... 44 3.1.1 實驗耗材與藥品規格 .......................................................................... 44 3.1.2 實驗流程 .............................................................................................. 45 3.1.2.1 基板清洗 ................................................................................... 46 3.1.2.2 元件製備 ................................................................................... 47 3.2 實驗儀器與原理 ............................................................................................. 49 3.2.1 實驗儀器簡表 ...................................................................................... 49 3.2.2 磁控式濺鍍系統(Magnetic Sputtering) ......................................... 49 3.2.3 高溫管狀爐系統(Tube Furnace) .................................................... 50 3.2.4 微波電漿系統(Microwave Plasma System) ................................... 51 3.3 分析儀器與儀器原理 ..................................................................................... 52 3.3.1 分析儀器簡表 ...................................................................................... 52 3.3.2 X射線光電子能譜儀(X-ray Photoelectron Spectrometer, XPS)….53 3.3.3 紫外光光電子能譜儀(Ultraviolet Photoelectron Spectrometer, UPS) ........................................................................................................................ 55 3.3.4 紫外光-可見光分光光譜儀(UV-Vis Spectrometer) ...................... 56 3.3.5 高解析度共軛焦顯微拉曼光譜儀(Raman Spectrometer) ............ 57 3.3.6 X-Ray繞射分析儀(X-ray diffractometer, XRD) ............................ 58 3.3.7 場發射掃描式電子顯微鏡(Field Emission-Scanning Electron Microscopy, FESEM) .................................................................................. 59 3.3.8 直流電源供應器(DC power supply) .............................................. 60 3.3.9 波型產生器和示波器(Function Generators and Oscilloscope) ..... 61 第四章 結果與討論 ...................................................................................................... 62 4.1 RuS2薄膜之材料分析 ..................................................................................... 62 4.1.1 RuS2薄膜之FESEM結果分析 ........................................................... 62 4.1.2 RuS2薄膜之Raman結果分析 ............................................................. 63 4.1.3 RuS2薄膜之XRD結果分析 ................................................................ 64 4.1.4 RuS2薄膜之XPS結果分析 ................................................................. 65 4.1.5 RuS2薄膜之UPS結果分析 ................................................................. 68 4.1.6 RuS2薄膜之UV-vis結果分析 ............................................................. 70 4.1.7 RuS2薄膜之能帶結構 .......................................................................... 71 4.2 Ti/RuS2/Ru之電阻式記憶體元件分析 ........................................................... 72 4.2.1 Ti/RuS2/Ru元件之FESEM截面結果分析 ......................................... 72 4.2.2 Ti/RuS2/Ru元件之XPS縱深分析 ...................................................... 73 4.2.3 Ti/RuS2/Ru元件之電性分析 ................................................................ 84 4.2.3.1 Ti/RuS2/Ru元件之Forming Process ......................................... 84 4.2.3.2 Ti/RuS2/Ru元件之I-V曲線和Endurance測試 ...................... 84 4.2.3.3 Ti/RuS2/Ru元件之電荷傳導機制分析 ..................................... 85 4.2.3.4 Ti/RuS2/Ru元件之切換機構分析 ............................................. 88 4.2.3.5 Ti/RuS2/Ru元件之能帶結構及內部缺陷示意圖 ..................... 91 4.2.3.6 Ti/RuS2/Ru元件之模擬神經元突觸的仿生特性 ..................... 92 4.3 Ni/RuS2/Ru之電阻式記憶體元件分析 .......................................................... 94 4.3.1 Ni/RuS2/Ru元件之FESEM截面結果分析 ........................................ 94 4.3.2 Ni/RuS2/Ru元件之XPS縱深分析 ...................................................... 95 4.3.3 Ni/RuS2/Ru元件之電性分析 ............................................................. 106 4.3.3.1 Ni/RuS2/Ru元件之Forming Process ...................................... 106 4.3.3.2 Ni/RuS2/Ru元件之I-V曲線和Endurance測試 ................... 106 4.3.3.3 Ni/RuS2/Ru元件之電荷傳導機制分析 .................................. 107 4.3.3.4 Ni/RuS2/Ru元件之切換機構分析 .......................................... 109 4.3.3.5 Ni/RuS2/Ru元件之能帶結構及內部缺陷示意圖 ................... 114 4.3.3.6 Ni/RuS2/Ru元件之模擬神經元突觸的仿生特性 ................... 116 4.4 Ti/RuS2/Ru和Ni/RuS2/Ru之電阻式記憶體元件比較 ................................. 117 4.5 Ti/RuS2/Ru和Ni/RuS2/Ru之電阻式記憶體元件與參考文獻比較 ............. 118 第五章 結論 ................................................................................................................. 119 第六章 未來展望 ........................................................................................................ 120 第七章 參考文獻 ........................................................................................................ 121 第八章 附錄 ................................................................................................................ 131 附錄一 Ti/RuS2/Ru之蕭特基能障大小分析以及能帶示意圖 ......................... 131 附錄二 Ni/RuS2/Ru之蕭特基能障大小分析以及能帶示意圖 ........................ 133 附錄三 不同硫化溫度RuS2薄膜之XRD和Raman分析 .............................. 134 附錄四 Ti/RuS2/Ru之硫化溫度600°C之電性分析 ......................................... 134 附錄五 Ti/RuS2/Ru之硫化溫度700°C之電性分析 ......................................... 135 附錄六 Ti/RuS2/Ru之硫化溫度550°C之不同面積Forming、IV and Endurance .............................................................................................................................. 136 附錄七 Ni/RuS2/Ru之硫化溫度550°C之不同面積Forming、IV and Endurance .............................................................................................................................. 137 附錄八 Ti and Ni/RuS2/Ru之硫化溫度550°C之Retention ............................. 138 附錄九 Ti/RuS2/Ru之硫化溫度550°C之連續電導阻態特性測試 ................. 139 附錄十 RuS2和Ru之XRD圖譜與標準卡號對比數據 .................................. 140

[1] 王永和,(2022) AI、新興 3D RRAM架構及其應用,MA-tek。Retrieved June 11, 2024, from https://www.matek.com/zh-TW/Tech_Article/detail/specialist- column/all/202204-IAR
[2] 王宣智,(2023) 半導體製程創新拓展新藍海,經濟日報。Retrieved June 11, 2024, from https://money.udn.com/money/story/11162/7536365
[3] 鍾宇齊,(2022) 記憶體是什麼?3分鐘看懂電腦記憶體和硬碟的不同之處,遊戲機地。Retrieved June 11, 2024, from https://news.gamebase.com.tw/news/detail/99399565
[4] 巫勇賢,(2022) 邁向高密度儲存應用鐵電記憶體的原理、挑戰與展望,MA-tek。Retrieved June 11, 2024, from https://www.matek.com/zh-TW/Tech_Article/detail/specialist-column/all/202202-IAR
[5] 許宏輝,相變化記憶體技術發展現況,工研院電子材料雜誌,27,(2005) 128-142。
[6] 曾院介、陳冠名,磁性材料及元件應用技術-磁阻記憶體近期發展與挑戰,科技新知,228,(2021) 8-19。
[7] F. Zahoor, T.Z. Azni Zulkifli, F.A. Khanday, Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications, Nanoscale Research Letters, 15 (2020) 1-26.
[8] Y.M. Lee, B.M. Lim, H.-S. Lee, Selector-less crossbar array resistive RAM based on TiO2 fabricated by photochemical metal-organic deposition, Journal of Alloys and Compounds, 977 (2024) 173312.
[9] A. Sawa, Resistive switching in transition metal oxides, Materials Today, 11 (2008) 28-36.
[10] X. Cao, X. Li, X. Gao, W. Yu, X. Liu, Y. Zhang, L. Chen, X. Cheng, Forming-free colossal resistive switching effect in rare-earth-oxide Gd2O3 films for memristor applications, Journal of Applied Physics, 106 (2009) 073723.
[11] D.C. Kim, S. Seo, S.E. Ahn, D.S. Suh, M.J. Lee, B.H. Park, I.K. Yoo, I.G. Baek, H.J. Kim, E.K. Yim, J.E. Lee, S.O. Park, H.S. Kim, U.I. Chung, J.T. Moon, B.I. Ryu, Electrical observations of filamentary conductions for the resistive memory switching in NiO films, Applied Physics Letters, 88 (2006) 202102.
[12] A. Chen, S. Haddad, Y.C. Wu, T.N. Fang, S. Kaza, Z. Lan, Erasing characteristics of Cu2O metal-insulator-metal resistive switching memory, Applied Physics Letters, 92 (2008) 013503.
[13] J. Park, K.P. Biju, S. Jung, W. Lee, J. Lee, S. Kim, S. Park, J. Shin, H. Hwang, Multibit Operation of TiOx-Based ReRAM by Schottky Barrier Height Engineering, IEEE Electron Device Letters, 32 (2011) 476-478.
[14] C.Y. Lin, C.Y. Wu, C.Y. Wu, T.C. Lee, F.L. Yang, C. Hu, T.Y. Tseng, Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices, IEEE Electron Device Letters, 28 (2007) 366-368.
[15] F.-C. Chiu, P.-W. Li, W.-Y. Chang, Reliability characteristics and conduction mechanisms in resistive switching memory devices using ZnO thin films, Nanoscale Research Letters, 7 (2012) 178.
[16] A. Prakash, D. Jana, S. Maikap, TaOx-based resistive switching memories: prospective and challenges, Nanoscale Res Lett, 8 (2013) 418.
[17] J. Jeon, K. Eom, M. Lee, S. Kim, H. Lee, Collective Control of Potential-Constrained Oxygen Vacancies in Oxide Heterostructures for Gradual Resistive Switching, Small, 19 (2023) 2301452.
[18] S. Aldana, P. García-Fernández, R. Romero-Zaliz, M.B. González, F. Jiménez-Molinos, F. Gómez-Campos, F. Campabadal, J.B. Roldán, Resistive switching in
HfO2 based valence change memories, a comprehensive 3D kinetic Monte Carlo approach, Journal of Physics D: Applied Physics, 53 (2020) 225106.
[19] T. Sadi, A. Mehonic, L. Montesi, M. Buckwell, A. Kenyon, A. Asenov, Investigation of resistance switching in SiOx RRAM cells using a 3D multi-scale kinetic Monte Carlo simulator, Journal of Physics: Condensed Matter, 30 (2018) 084005.
[20] A. Padovani, L. Larcher, O. Pirrotta, L. Vandelli, G. Bersuker, Microscopic Modeling of HfOx RRAM Operations: From Forming to Switching, IEEE Transactions on Electron Devices, 62 (2015) 1998-2006.
[21] J. Lee, W. Schell, X. Zhu, E. Kioupakis, W.D. Lu, Charge Transition of Oxygen Vacancies during Resistive Switching in Oxide-Based RRAM, ACS Applied Materials & Interfaces, 11 (2019) 11579-11586.
[22] A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface, Applied Physics Letters, 85 (2004) 4073-4075.
[23] R. Fors, S.I. Khartsev, A.M. Grishin, Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition, Physical Review B, 71 (2005) 045305.
[24] J. Jang, V. Subramanian, Effect of electrode material on resistive switching memory behavior of solution-processed resistive switches: Realization of robust multi-level cells, Thin Solid Films, 625 (2017) 87-92.
[25] W. Kim, S.I. Park, Z. Zhang, S. Wong, Current Conduction Mechanism of Nitrogen-Doped AlOx RRAM, IEEE Transactions on Electron Devices, 61 (2014) 2158-2163.
[26] M. Park, J. Park, S. Kim, Compatible resistive switching mechanisms in Ni/SiOx/ITO and application to neuromorphic systems, Journal of Alloys and Compounds, 903 (2022) 163870.
[27] Y. Qi, Z. Shen, C. Zhao, C.Z. Zhao, Effect of electrode area on resistive switching
behavior in translucent solution-processed AlOx based memory device, Journal of Alloys and Compounds, 822 (2020) 153603.
[28] S. Bagdzevicius, K. Maas, M. Boudard, M. Burriel, Interface-Type Resistive Switching in Perovskite Materials, in: J. Rupp, D. Ielmini, I. Valov (Eds.) Resistive Switching: Oxide Materials, Mechanisms, Devices and Operations, Springer International Publishing, Cham, 2022, pp. 235-287.
[29] E.W. Lim, R. Ismail, Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey Electronics, 4 (2015) 586-613
[30] F.-C. Chiu, A Review on Conduction Mechanisms in Dielectric Films, Advances in Materials Science and Engineering, 2014 (2014) 578168.
[31] S.P. Lee, C. Shaestagir, Chapter three - The effect of electrode-oxide interfaces in gas sensor operation, in: R. Jaaniso, O.K. Tan (Eds.) Semiconductor Gas Sensors (Second Edition), Woodhead Publishing, 2020, pp. 71-132.
[32] X. Feng, Y. Li, L. Wang, S. Chen, Z.G. Yu, W.C. Tan, N. Macadam, G. Hu, L. Huang, L. Chen, X. Gong, D. Chi, T. Hasan, A.V.Y. Thean, Y.W. Zhang, K.W. Ang, A Fully Printed Flexible MoS2 Memristive Artificial Synapse with Femtojoule Switching Energy, Advanced Electronic Materials, 5 (2019) 1900740.
[33] M.K. Rahmani, M. Ismail, C. Mahata, S. Kim, Effect of interlayer on resistive switching properties of SnO2-based memristor for synaptic application, Results in Physics, 18 (2020) 103325.
[34] G.-q. Bi, M.-m. Poo, Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type, The Journal of Neuroscience, 18 (1998) 10464.
[35] V. Pandey, A. Adiba, P. Nehla, S. Munjal, T. Ahmad, Bipolar resistive switching with multiple intermediate resistance states in Mn3O4 thin film, Materials Today Communications, 34 (2023) 105484.
[36] X. Zhao, Z. Fan, H. Xu, Z. Wang, J. Xu, J. Ma, Y. Liu, Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS2/Au structure for multilevel flexible memory, Journal of Materials Chemistry C, 6 (2018) 7195-7200.
[37] D. Kuzum, S. Yu, H.S. Philip Wong, Synaptic electronics: materials, devices and applications, Nanotechnology, 24 (2013) 382001.
[38] P.Y. Chen, X. Peng, S. Yu, NeuroSim+: An integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures, IEEE International Electron Devices Meeting, 1(2017) 6.1.1-6.1.4.
[39] M. Zangeneh, A. Joshi, Design and Optimization of Nonvolatile Multibit 1T1R Resistive RAM, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22 (2014) 1815-1828.
[40] X. Xu, H. Lv, H. Liu, Q. Luo, T. Gong, M. Wang, G. Wang, M. Zhang, Y. Li, Q. Liu, S. Long, M. Liu, Investigation of LRS dependence on the retention of HRS in CBRAM, Nanoscale Research Letters, 10 (2015) 61.
[41] G. Niu, H.-D. Kim, R. Roelofs, E. Perez, M.A. Schubert, P. Zaumseil, I. Costina, C. Wenger, Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition, Scientific Reports, 6 (2016) 28155.
[42] D. McGrath, (2017) Imec Eyes New Metals for Interconnect, Imec. Retrieved June 11, 2024, from https://www.imec-int.com/en/press/imec-introduces-intermetallics-and-airgaps-advanced-interconnect-metallization-schemes
[43] J. Li, N.V. Medhekar, V.B. Shenoy, Bonding Charge Density and Ultimate Strength of Monolayer Transition Metal Dichalcogenides, The Journal of Physical Chemistry C, 117 (2013) 15842-15848.
[44] F. Ersan, S. Cahangirov, G. Gökoğlu, A. Rubio, E. Aktürk, Stable monolayer honeycomb-like structures of RuS2, Physical Review B, 94 (2016) 155415.
[45] Sutarno, O. Knop, K.I.G. Reid, Chalcogenides of the transition elements. V. Crystal structures of the disulfides and ditellurides of ruthenium and osmium, Canadian Journal of Chemistry, 45 (1967) 1391-1400.
[46] S. Harris, R.R. Chianelli, Catalysis by transition metal sulfides: The relation between calculated electronic trends and HDS activity, Journal of Catalysis, 86 (1984) 400-412.
[47] H. Ezzouia, R. Heindl, R. Parsons, H. Tributsch, Studies on the stability of RuS2 single crystals and the photo-oxidation of halides, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 165 (1984) 155-166.
[48] R. Sai, O. Gorochov, H. Ezzaouia, The study of the electronic structure of RuS2, Results in Physics, 26 (2021) 104393.
[49] Z.-Y. Feng, Y. Yang, J.-M. Zhang, First-principles study on the structural, electronic, and magnetic properties of bulk and (001) surface of RuS2, Journal of Physics and Chemistry of Solids, 129 (2019) 227-233.
[50] T. Nakazawa, D. Kim, J. Kim, Y. Kotsugi, T. Cheon, S.-M. Chung, S.-H. Kim, H. Kim, Development of RuS2 for near-infrared photodetector by atomic layer deposition and post-sulfurization, Rare Metals, 41 (2022) 3086-3099.
[51] S.S. Lin, Y.S. Huang, C.R. Huang, M.C. Lee, Raman investigation of RuS2, Solid State Communications, 69 (1989) 589-593.
[52] A. Kratzig, C. Zachäus, S. Brunken, D. Thomas, P. Bogdanoff, K. Ellmer, S. Fiechter, RuS2 thin films as oxygen-evolving electrocatalyst: Highly oriented growth on single-crystal FeS2 substrate and their properties compared to polycrystalline layers, physica status solidi (a), 211 (2014) 2020-2029.
[53] P. Li, X. Duan, S. Wang, L. Zheng, Y. Li, H. Duan, Y. Kuang, X. Sun, Amorphous Ruthenium-Sulfide with Isolated Catalytic Sites for Pt-Like Electrocatalytic Hydrogen Production Over Whole pH Range, Small, 15 (2019) 1904043.
[54] L. Liu, Y. Wang, W. Chen, S. Ren, J. Guo, X. Kang, X. Zhao, Robust resistive switching in MoS2-based memristor with Ti top electrode, Applied Surface Science, 605 (2022) 154698.
[55] K.M. Freedy, H. Zhang, P.M. Litwin, L.A. Bendersky, A.V. Davydov, S. McDonnell, Thermal Stability of Titanium Contacts to MoS2, ACS Applied Materials & Interfaces, 11 (2019) 35389-35393.
[56] P. Aggarwal, H. Sheoran, P. Bisht, O.K. Prasad, C.-H. Chung, E.Y. Chang, B.R. Mehta, R. Singh, Synthesis of a large area ReS2 thin film by CVD for in-depth investigation of resistive switching: effects of metal electrodes, channel width and noise behaviour, Nanoscale, 15 (2023) 14109-14121.
[57] V.K. Perla, S.K. Ghosh, K. Mallick, Ultrafine Nickel Sulfide-Based Bipolar Resistive Switching Device as Artificial Synapses for Neuromorphic Application, ACS Applied Electronic Materials, 4 (2022) 6117-6124.
[58] J. Shen, B. Zhou, F. Wang, Q. Wan, X. Shan, C. Li, X. Lin, K. Zhang, Low consumption two-terminal artificial synapse based on transfer-free single-crystal MoS2 memristor, Nanotechnology, 31 (2020) 265202.
[59] T. Fujii, M. Arita, Y. Takahashi, I. Fujiwara, In situ transmission electron microscopy analysis of conductive filament during solid electrolyte resistance switching, Applied Physics Letters, 98 (2011) 212104.
[60] K.-L. Lin, T.-H. Hou, Y.-J. Lee, J.-W. Chang, J.-H. Lin, J. Shieh, C.-T. Chou, T.-F. Lei, W.-H. Chang, W.-Y. Jang, C.-H. Lin, Switching Mode and Mechanism in Binary Oxide Resistive Random Access Memory Using Ni Electrode, Japanese Journal of Applied Physics, 52 (2013) 031801.
[61] X. Wang, H. Qian, L. Guan, W. Wang, B. Xing, X. Yan, S. Zhang, J. Sha, Y. Wang, Influence of metal electrode on the performance of ZnO based resistance switching memories, Journal of Applied Physics, 122 (2017) 154301.
[62] M.P. Seah, The quantitative analysis of surfaces by XPS: A review, Surface and Interface Analysis, 2 (1980) 222-239.
[63] D. Mogk, (2021) X-Ray Photoelectron Spectroscopy (XPS; aka Electron Spectroscopy for Chemical Analysis, ESCA), Nanotechnology in STEM. Retrieved June 11, 2024, from https://serc.carleton.edu/msu_nanotech/methods/xps.html
[64] J.W. Kim, A. Kim, Absolute work function measurement by using photoelectron spectroscopy, Current Applied Physics, 31 (2021) 52-59.
[65] Michael Chen, (2020) UV-Vis-NIR spectrum for calculation of bandgap. Retrieved June 11, 2024, from https://iscms.westlake.edu.cn/info/1052/1436.htm
[66] G. Steiner, Günter G. Hoffmann: Infrared and Raman spectroscopy: principles and applications, Analytical and Bioanalytical Chemistry, 416 (2024) 1103-1104.
[67] A. Ali, Y.W. Chiang, R.M. Santos, X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions, Minerals 2 (2022) 12.
[68] M. Abd Mutalib, M.A. Rahman, M.H.D. Othman, A.F. Ismail, J. Jaafar, Chapter 9 - Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Spectroscopy, in: N. Hilal, A.F. Ismail, T. Matsuura, D. Oatley-Radcliffe (Eds.) Membrane Characterization, Elsevier, 2017, pp. 161-179.
[69] T. Mei, M. Gao, D. Liu, Y. Wang, Y. Huang, Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment, Plasma Science and Technology, 23 (2021) 2.
[70] M. Damayanti, T. Sritharan, Z. Gan, S. Mhaisalkar, N. Jiang, L. Chan, Ruthenium Barrier/Seed Layer for Cu/Low- κ Metallization Crystallographic Texture, Roughness, Diffusion, and Adhesion, Journal of The Electrochemical Society, 153 (2006) J41-J45.
[71] H. Wang, X. Li, Q. Ruan, J. Tang, Ru and RuOx decorated carbon nitride for efficient
ammonia photosynthesis, Nanoscale, 12 (2020) 12329-12335.
[72] X. Gao, B. Li, X. Sun, B. Wu, Y. Hu, Z. Ning, J. Li, N. Wang, Engineering heterostructure and crystallinity of Ru/RuS2 nanoparticle composited with N-doped graphene as electrocatalysts for alkaline hydrogen evolution, Chinese Chemical Letters, 32 (2021) 3591-3595.
[73] A.M. Redon, Photoelectrochemical behaviour of RuS2 semiconducting electrodes, Solar Cells, 15 (1985) 27-37.
[74] K. Xu, H.-X. Deng, Z. Wang, Y. Huang, F. Wang, S.-S. Li, J.-W. Luo, J. He, Sulfur vacancy activated field effect transistors based on ReS2 nanosheets, Nanoscale, 7 (2015) 15757-15762.
[75] W.-C. Peng, Y.-C. Chen, J.-L. He, S.-L. Ou, R.-H. Horng, D.-S. Wuu, Tunability of p- and n-channel TiOx thin film transistors, Scientific Reports, 8 (2018) 1.
[76] K. Bindumadhavan, S. Srivastava, S. Mahanty, TiS2–MWCNT hybrid as high performance anode in lithium-ion battery, Journal of Nanoparticle Research, 15 (2013) 9.
[77] J. Acharya, B.G.S. Raj, T.H. Ko, M.-S. Khil, H.-Y. Kim, B.-S. Kim, Facile one pot sonochemical synthesis of CoFe2O4/MWCNTs hybrids with well-dispersed MWCNTs for asymmetric hybrid supercapacitor applications, International Journal of Hydrogen Energy, 45 (2020) 3073-3085.
[78] S.J. Won, S. Suh, M.S. Huh, H.J. Kim, High-Quality Low-Temperature Silicon Oxide by Plasma-Enhanced Atomic Layer Deposition Using a Metal–Organic Silicon Precursor and Oxygen Radical, IEEE Electron Device Letters, 31 (2010) 857-859.
[79] J. Aziz, H. Kim, S. Rehman, J.-H. Hur, Y.-H. Song, M.F. Khan, D.-k. Kim, Effect of oxygen stoichiometry on the threshold switching of RF-sputtered NbOx (x = 2.0–2.5) films, Materials Research Bulletin, 144 (2021) 111492.
[80] C.J. Oluigbo, Y. Xu, H. Louis, A.B. Yusuf, W. Yaseen, N. Ullah, K.J. Alagarasan, M. Xie, E.E. Ekpenyong, J. Xie, Controllable fabrication of abundant nickel-nitrogen doped CNT electrocatalyst for robust hydrogen evolution reaction, Applied Surface Science, 562 (2021) 150161.
[81] Y.-J. Choi, S. Bang, T.-H. Kim, K. Hong, S. Kim, S. Kim, B.-G. Park, W.Y. Choi, Electric-Field-Induced Metal Filament Formation in Cobalt-Based CBRAM Observed by TEM, ACS Applied Electronic Materials, 5 (2023) 1834-1843.
[82] F. Cüppers, S. Menzel, C. Bengel, A. Hardtdegen, M. von Witzleben, U. Böttger, R. Waser, S. Hoffmann-Eifert, Exploiting the switching dynamics of HfO2-based ReRAM devices for reliable analog memristive behavior, Applied Physics Letters Materials, 7 (2019) 091105.
[83] W. Zhang, Y. Mao, W. Duan, Synaptic and Digital Switching in Diffusion Effect-Assisted Oxides for All-Inorganic Flexible Memristor, physica status solidi (RRL) – Rapid Research Letters, 13 (2019) 1900016.
[84] C.R. Crowell, The Richardson constant for thermionic emission in Schottky barrier diodes, Solid-State Electronics, 8 (1965) 395-399.

無法下載圖示 全文公開日期 2026/08/20 (校內網路)
全文公開日期 2026/08/20 (校外網路)
全文公開日期 2026/08/20 (國家圖書館:臺灣博碩士論文系統)
QR CODE