簡易檢索 / 詳目顯示

研究生: 林鈺益
Yu-Yi Lin
論文名稱: 鎢摻雜錳基MOF衍生碳材料用於太陽光驅動之氣態甲醛降解
Tungsten-doped Mn Based MOF Derived Carbon Material for Solar-Driven Gaseous Formaldehyde Degradation
指導教授: 胡哲嘉
Che-Chia Hu
口試委員: 胡哲嘉
Che-Chia Hu
邱昱誠
Yu-Cheng Chiu
簡思佳
Szu-Chia Chien
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 63
中文關鍵詞: 二氧化錳MOF衍生碳材金屬摻雜光熱催化
外文關鍵詞: Manganese dioxide, MOF derived carbon, Metal doping, Photothermal catalysis
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近來,受到地球暖化加劇的影響,室外溫度動輒超過36攝氏度,人們大多傾向待在室內活動,因此室內空氣的品質越來越受到人們的重視,而甲醛是一種具代表性的室內空氣污染物,如何有效降低甲醛濃度便成為科學家們關注的議題。而金屬有機框架(Metal Organic Frameworks, MOFs)作為前驅物具有較大比表面積,較多孔隙以及可調性的孔洞分布等優點,衍生自MOFs的碳材料則同時具有高化學穩定性、高導電率且承襲MOFs中出色的高孔隙率。本研究選用豐度高、成本低且具有高效降解能力的二氧化錳作為觸媒使用,不過可見光使用率低以及低電子遷移率仍限制其應用,鎢金屬摻雜可以調節二氧化錳的特性(如形貌、比表面積、表面缺陷、電子結構、表面氧物種等),可使活性位點的數目增多並有效提高光熱偕同效應性能,進而改善甲醛催化活性。而新興的光熱催化法結合了光催化和熱催化的優點,其主要利用紫外-可見光驅動光催化反應,並利用紅外光產生熱催化所需的熱能。除此之外,含碳材料在太陽光譜中具有強大的光吸收能力及優異光熱轉換能力,可以通過光熱協同效應提高全光譜太陽光的利用率,從而提高催化活性並表現出顯著的效果。結果顯示,在不同比例鎢摻雜量下,0.5% W-MnO2具有最好的催化活性,經過兩小時的太陽光模擬器照射後,可以達到超過90%的移除率。而在同時照光且控制60攝氏度的光熱催化下,一小時內能快速達到大約95%的移除率。我們所合成出的觸媒展現優異的甲醛移除效率,除了可歸因於材料中奈米石墨碳貢獻的光熱效應外,摻雜後的二氧化錳產生更多氧空位也是效率提升的主要原因。本實驗利用太陽光模擬器提供反應所需光能及熱能來取代外加設備的需求,可大幅降低設備所需之消耗,具備未來發展的潛能。


Recently, due to the exacerbation of global warming, outdoor temperatures often exceed 36 degrees Celsius, leading most people to prefer indoor activities. Therefore, indoor air quality has become increasingly important. Formaldehyde, a representative indoor air pollutant, has become a focal point for scientists aiming to effectively reduce its concentration. Metal Organic Frameworks (MOFs) serve as precursors with advantages such as larger specific surface area, more porous structure, and adjustable pore distribution. Derived carbon materials from MOFs inherit high chemical stability, conductivity, and excellent porosity from MOFs. This study employs manganese dioxide, which is abundant, low-cost, and highly efficient in degradation, as a catalyst. However, its low visible light utilization rate and low electron migration rate still limit its application. Tungsten doping can adjust the properties of manganese dioxide such as morphology, specific surface area, surface defects, electronic structure, surface oxygen species, increase the number of active sites, and effectively enhance the photocatalytic performance, thus improving formaldehyde catalytic activity. The novel photothermal catalysis method combines the advantages of photo catalysis and thermal catalysis. It mainly utilizes UV-visible light to drive photocatalytic reactions and uses infrared light to generate the heat energy required for thermal catalysis. In addition, carbon-containing materials have strong light absorption capability and excellent photothermal conversion ability in the solar spectrum. They can improve the utilization of full-spectrum solar energy through photothermal synergistic effects, thereby enhancing catalytic activity and demonstrating significant effects. The results show that, among different ratio of tungsten doping, 0.5% W-MnO2 exhibits the best catalytic activity. After two hours of simulated sunlight exposure, it can achieve more than 90% removal rate. Moreover, under simultaneous irradiation and temperature controlled at 60 degrees Celsius, a rapid removal rate of approximately 95% can be achieved within one hour. The catalyst synthesized in this study demonstrates excellent formaldehyde removal efficiency. In addition to the photothermal effect contributed by nano-graphite carbon in the material, the increased number of oxygen vacancies produced by manganese dioxide doping is also a major reason for the efficiency improvement. This experiment uses a solar simulator to provide the required light and heat energy for the reaction, replacing the need for additional equipment, thus significantly reducing energy consumption and holding potential for future development.

中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 第二章 文獻回顧 4 2.1 甲醛特性及危害 4 2.2 常見甲醛移除方法 6 2.4 光熱效應與應用 11 2.4.1 光熱協同效應模式 11 2.4.2 光熱觸媒應用於VOCs移除 13 2.5 觸媒特性 15 2.5.1 金屬有機框架衍生碳材料 15 2.5.2 過渡金屬氧化物 17 2.5.3 金屬摻雜 20 第三章 實驗方法與使用儀器 24 3.1 實驗藥品與設備 24 3.2 觸媒製備 25 3.2.1 錳基MOF之製備 25 3.2.2 錳基MOF衍生碳材之製備 26 3.2.3 鎢摻雜於含碳二氧化錳之製備 26 3.3 甲醛移除實驗 26 3.4 分析儀器及原理 27 第四章 結果與討論 32 4.1 晶體結構分析 32 4.2 表面形貌分析 33 4.3 化學結構分析 36 4.4 光學特性分析 40 4.5 甲醛移除活性測試 41 4.6 甲醛光熱催化移除機制 44 第五章 結論 49 參考文獻 50 附錄一 58 附錄二 62

[1] X. Zeng, C. Shan, M. Sun, D. Ding, S. Rong, Graphene enhanced α-MnO2 for photothermal catalytic decomposition of carcinogen formaldehyde, Chinese Chemical Letters, 33 (2022) 4771-4775.
[2] T. Salthammer, Formaldehyde sources, formaldehyde concentrations and air exchange rates in European housings, Building And Environment, 150 (2019) 219-232.
[3] C. Liu, X. Miao, J. Li, Outdoor formaldehyde matters and substantially impacts indoor formaldehyde concentrations, Building And Environment, 158 (2019) 145-150.
[4] T. Salthammer, The formaldehyde dilemma, International Journal of Hygiene And Environmental Health, 218 (2015) 433-436.
[5] Z. Dezhi, D. Tianying, L. Xiaosong, L. Jinglin, S. Chuan, Z. Aimin, Ozone catalytic oxidation of HCHO in air over MnOx at room temperature, Chinese Journal of Catalysis, 33 (2012) 396-401.
[6] B. Zhu, X. S. Li, P. Sun, J. L. Liu, X. Y. Ma, X. Zhu, A. M. Zhu, A novel process of ozone catalytic oxidation for low concentration formaldehyde removal, Chinese Journal of Catalysis, 38 (2017) 1759-1769.
[7] S. Sultana, A. M. Vandenbroucke, C. Leys, N. De Geyter, R. Morent, Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: a review, Catalysts, 5 (2015) 718-746.
[8] R. Aerts, X. Tu, W. Van Gaens, J. Whitehead, A. Bogaerts, Gas purification by nonthermal plasma: A case study of ethylene, Environmental Science & Technology, 47 (2013) 6478-6485.
[9] A. N. Tamar, T. Hamzehlouyan, M. R. Khani, M. Alihoseini, B. Shokri, Synergistic effects of plasma and catalyst in formaldehyde conversion over a Ni/α-Al2O3 catalyst in a dielectric barrier discharge reactor, Results In Engineering, 17 (2023) 100997.
[10] B. Robert, G. Nallathambi, Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: A review, Environmental Chemistry Letters, 19 (2021) 2551-2579.
[11] J. P. Bellat, I. Bezverkhyy, G. Weber, S. Royer, R. Averlant, J. M. Giraudon, J. F. Lamonier, Capture of formaldehyde by adsorption on nanoporous materials, Journal of Hazardous Materials, 300 (2015) 711-717.
[12] Z. Wang, W. Wang, D. Jiang, L. Zhang, Y. Zheng, Diamine-appended metal–organic frameworks: enhanced formaldehyde-vapor adsorption capacity, superior recyclability and water resistibility, Dalton Transactions, 45 (2016) 11306-11311.
[13] Y. W. Li, W. L. Ma, Photocatalytic oxidation technology for indoor air pollutants elimination: A review, Chemosphere, 280 (2021) 130667.
[14] M. Chen, H. Wang, X. Chen, F. Wang, X. Qin, C. Zhang, H. He, High-performance of Cu-TiO2 for photocatalytic oxidation of formaldehyde under visible light and the mechanism study, Chemical Engineering Journal, 390 (2020) 124481.
[15] H. Dou, D. Long, X. Rao, Y. Zhang, Y. Qin, F. Pan, K. Wu, Photocatalytic degradation kinetics of gaseous formaldehyde flow using TiO2 nanowires, ACS Sustainable Chemistry & Engineering, 7 (2019) 4456-4465.
[16] Y. J. Lee, K. Vikrant, J. E. Szulejko, K. H. Kim, F. Dong, Thermocatalytic oxidation of a three-component mixture of volatile organic compounds by a titanium dioxide-supported platinum catalyst, Journal of Cleaner Production, 325 (2021) 129279.
[17] Z. Wang, W. Wang, L. Zhang, D. Jiang, Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature, Catalysis Science & Technology, 6 (2016) 3845-3853.
[18] Y. Qin, X. Zhu, D. Wang, Experimental and theoretical study on thermal catalytic degradation of HCHO over Mn2O3 series catalysts, Journal of Environmental Chemical Engineering, (2024) 112826.
[19] N. Zhang, W. He, Z. Cheng, J. Lu, Y. Zhou, D. Ding, S. Rong, Construction of α-MnO2/g-C3N4 Z-scheme heterojunction for photothermal synergistic catalytic decomposition of formaldehyde, Chemical Engineering Journal, 466 (2023) 143160.
[20] P. Sun, H. Yu, T. Liu, Y. Li, Z. Wang, Y. Xiao, X. Dong, Efficiently photothermal conversion in a MnOx-based monolithic photothermocatalyst for gaseous formaldehyde elimination, Chinese Chemical Letters, 33 (2022) 2564-2568.
[21] R. Ma, J. Sun, D. H. Li, J. J. Wei, Review of synergistic photo-thermo-catalysis: Mechanisms, materials and applications, International Journal of Hydrogen Energy, 45 (2020) 30288-30324.
[22] P. Wu, X. Jin, Y. Qiu, D. Ye, Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts, Environmental Science & Technology, 55 (2021) 4268-4286.
[23] J. Wang, G. Zhang, P. Zhang, Graphene-assisted photothermal effect on promoting catalytic activity of layered MnO2 for gaseous formaldehyde oxidation, Applied Catalysis B: Environmental, 239 (2018) 77-85.
[24] F. Liu, M. Zeng, Y. Li, Y. Yang, M. Mao, X. Zhao, UV–vis–infrared light driven thermocatalytic activity of octahedral layered birnessite nanoflowers enhanced by a novel photoactivation, Advanced Functional Materials, 26 (2016) 4518-4526.
[25] M. Ding, R. W. Flaig, H. L. Jiang, O. M. Yaghi, Carbon capture and conversion using metal–organic frameworks and MOF-based materials, Chemical Society Reviews, 48 (2019) 2783-2828.
[26] K. Suresh, A. J. Matzger, Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal–organic framework (MOF), Angewandte Chemie International Edition, 58 (2019) 16790-16794.
[27] Y. Song, X. Li, C. Wei, J. Fu, F. Xu, H. Tan, J. Tang, L. Wang, A green strategy to prepare metal oxide superstructure from metal-organic frameworks, Scientific Reports, 5 (2015) 8401.
[28] Y. Lu, Y. Deng, S. Lu, Y. Liu, J. Lang, X. Cao, H. Gu, MOF-derived cobalt–nickel phosphide nanoboxes as electrocatalysts for the hydrogen evolution reaction, Nanoscale, 11 (2019) 21259-21265.
[29] Y. Zhao, Y. Liu, H. Kang, K. Cao, Y. Wang, L. Jiao, Nitrogen-doped hierarchically porous carbon derived from ZIF-8 and its improved effect on the dehydrogenation of LiBH4, International Journal of Hydrogen Energy, 41 (2016) 17175-17182.
[30] W. Zhang, X. Jiang, Y. Zhao, A. Carné-Sánchez, V. Malgras, J. Kim, J. H. Kim, S. Wang, J. Liu, J. S. Jiang, Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis, Chemical Science, 8 (2017) 3538-3546.
[31] Z. Xie, H. Wang, Y. Geng, M. Li, Q. Deng, Y. Tian, R. Chen, X. Zhu, Q. Liao, Carbon-based photothermal superhydrophobic materials with hierarchical structure enhances the anti-icing and photothermal deicing properties, ACS Applied Materials & Interfaces, 13 (2021) 48308-48321.
[32] W. He, L. Zhou, M. Wang, Y. Cao, X. Chen, X. Hou, Structure development of carbon-based solar-driven water evaporation systems, Science Bulletin, 66 (2021) 1472-1483.
[33] X. Liu, L. Zhang, J. Wang, Design strategies for MOF-derived porous functional materials: Preserving surfaces and nurturing pores, Journal of Materiomics, 7 (2021) 440-459.
[34] Y. Li, C. Zhang, J. Ma, M. Chen, H. Deng, H. He, High temperature reduction dramatically promotes Pd/TiO2 catalyst for ambient formaldehyde oxidation, Applied Catalysis B: Environmental, 217 (2017) 560-569.
[35] E. Schade, F. M. Wisser, M. Franke, A. Weiz, M. Werheid, J. R. Martin, S. Kaskel, J. Grothe, Platinum deposited on carbon supports for the complete detoxification of formaldehyde at room temperature under humid conditions, Chemnanomat, 4 (2018) 1000-1006.
[36] W. Cui, D. Xue, N. Tan, B. Zheng, M. Jia, W. Zhang, Pt supported on octahedral Fe3O4 microcrystals as a catalyst for removal of formaldehyde under ambient conditions, Chinese Journal of Catalysis, 39 (2018) 1534-1542.
[37] X. Sun, J. Lin, H. Guan, L. Li, L. Sun, Y. Wang, S. Miao, Y. Su, X. Wang, Complete oxidation of formaldehyde over TiO2 supported subnanometer Rh catalyst at ambient temperature, Applied Catalysis B: Environmental, 226 (2018) 575-584.
[38] Y. Hua, Y. Ahmadi, K. H. Kim, Thermocatalytic Degradation of Gaseous Formaldehyde Using Transition Metal‐Based Catalysts, Advanced Science, 10 (2023) 2300079.
[39] Y. Sekine, Oxidative decomposition of formaldehyde by metal oxides at room temperature, Atmospheric Environment, 36 (2002) 5543-5547.
[40] Y. Dong, C. Su, K. Liu, H. Wang, Z. Zheng, W. Zhao, S. Lu, The Catalytic Oxidation of Formaldehyde by FeOx-MnO2-CeO2 Catalyst: Effect of Iron Modification, Catalysts, 11 (2021) 555.
[41] P. Umek, R. C. Korošec, The impact of K+ content on the structural transformations and morphological changes during the thermal treatment of α-MnO2 nanorods, Materials Research Bulletin, 47 (2012) 1523-1528.
[42] J. Gong, S. Rong, X. Wang, Y. Zhou, Critical review of catalytic degradation of formaldehyde via MnO2: From the perspective of process intensification, Journal of Cleaner Production, 377 (2022) 134242.
[43] T. Chen, H. Dou, X. Li, X. Tang, J. Li, J. Hao, Tunnel structure effect of manganese oxides in complete oxidation of formaldehyde, Microporous and Mesoporous Materials, 122 (2009) 270-274.
[44] J. Zhang, Y. Li, L. Wang, C. Zhang, H. He, Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures, Catalysis Science & Technology, 5 (2015) 2305-2313.
[45] P. Wu, S. Zhao, X. Jin, Y. Chong, Y. Li, A. Li, J. Lin, Y. Qiu, D. Ye, Acid-activated layered δ-MnO2 promotes VOCs combustion, Applied Surface Science, 574 (2022) 151707.
[46] Y. Zheng, W. Wang, D. Jiang, L. Zhang, Amorphous MnOx modified Co3O4 for formaldehyde oxidation: improved low-temperature catalytic and photothermocatalytic activity, Chemical Engineering Journal, 284 (2016) 21-27.
[47] J. Wang, D. Li, P. Li, P. Zhang, Q. Xu, J. Yu, Layered manganese oxides for formaldehyde-oxidation at room temperature: the effect of interlayer cations, RSC Advances, 5 (2015) 100434-100442.
[48] J. Gao, C. Jia, L. Zhang, H. Wang, Y. Yang, S. F. Hung, Y. Y. Hsu, B. Liu, Tuning chemical bonding of MnO2 through transition-metal doping for enhanced CO oxidation, Journal of Catalysis, 341 (2016) 82-90.
[49] P. Wang, J. Duan, J. Wang, F. Mei, P. Liu, Elucidating structure-performance correlations in gas-phase selective ethanol oxidation and CO oxidation over metal-doped γ-MnO2, Chinese Journal of Catalysis, 41 (2020) 1298-1310.
[50] X. Li, J. Ma, L. Yang, G. He, C. Zhang, R. Zhang, H. He, Oxygen vacancies induced by transition metal doping in γ-MnO2 for highly efficient ozone decomposition, Environmental Science & Technology, 52 (2018) 12685-12696.
[51] Y. Yang, J. Jia, Y. Liu, P. Zhang, The effect of tungsten doping on the catalytic activity of α-MnO2 nanomaterial for ozone decomposition under humid condition, Applied Catalysis A: General, 562 (2018) 132-141.
[52] J. Ma, J. Wang, Y. Dang, Photo-assisted oxidation of gaseous benzene on tungsten-doped MnO2 at lower temperature, Chemical Engineering Journal, 388 (2020) 124387.
[53] F. Liu, R. Cao, S. Rong, P. Zhang, Tungsten doped manganese dioxide for efficient removal of gaseous formaldehyde at ambient temperatures, Materials & Design, 149 (2018) 165-172.
[54] L. Yan, L. Niu, C. Shen, Z. Zhang, J. Lin, F. Shen, Y. Gong, C. Li, X. Liu, S. Xu, Modulating the electronic structure and pseudocapacitance of δ-MnO2 through transitional metal M (M=Fe, Co and Ni) doping, Electrochimica Acta, 306 (2019) 529-540.
[55] X. Zeng, B. Li, R. Liu, X. Li, T. Zhu, Investigation of promotion effect of Cu doped MnO2 catalysts on ketone-type VOCs degradation in a one-stage plasma-catalysis system, Chemical Engineering Journal, 384 (2020) 123362.
[56] H. K. Jeong, Y. P. Lee, R. J. Lahaye, M. H. Park, K. H. An, I. J. Kim, C. W. Yang, C. Y. Park, R. S. Ruoff, Y. H. Lee, Evidence of graphitic AB stacking order of graphite oxides, Journal of The American Chemical Society, 130 (2008) 1362-1366.
[57] J. Ji, X. Lu, C. Chen, M. He, H. Huang, Potassium-modulated δ-MnO2 as robust catalysts for formaldehyde oxidation at room temperature, Applied Catalysis B: Environmental, 260 (2020) 118210.
[58] L. Zhao, Z. Zhang, Y. Li, X. Leng, T. Zhang, F. Yuan, X. Niu, Y. Zhu, Synthesis of CeaMnOx hollow microsphere with hierarchical structure and its excellent catalytic performance for toluene combustion, Applied Catalysis B: Environmental, 245 (2019) 502-512.
[59] N. Huang, Z. Qu, C. Dong, Y. Qin, X. Duan, Superior performance of α@β-MnO2 for the toluene oxidation: Active interface and oxygen vacancy, Applied Catalysis A: General, 560 (2018) 195-205.
[60] A. K. Worku, D. W. Ayele, N. G. Habtu, Influence of nickel doping on MnO2 nanoflowers as electrocatalyst for oxygen reduction reaction, SN Applied Sciences, 3 (2021) 1-16.
[61] E. Hastuti, A. Subhan, P. Amonpattaratkit, M. Zainuri, S. Suasmoro, The effects of Fe-doping on MnO2: Phase transitions, defect structures and its influence on electrical properties, RSC Advances, 11 (2021) 7808-7823.
[62] T. Shen, K. Tian, M. Cao, L. Li, F. Shi, J. Qu, Q. Zheng, G. Zhang, Application of nickel foam supported Cu–MnO2 in microwave enhanced Fenton-like process for p-nitrophenol removal: Degradation, synergy and mechanism insight, Journal of Cleaner Production, 397 (2023) 136442.
[63] A. K. Worku, D. W. Ayele, N. G. Habtu, M. D. Ambaw, Engineering nanostructured Ag doped α-MnO2 electrocatalyst for highly efficient rechargeable zinc-air batteries, Heliyon, 8 (2022).
[64] A. K. Worku, D. W. Ayele, N. G. Habtu, M. A. Teshager, Z. G. Workineh, Enhancing oxygen reduction reaction activity of ε-MnO2 nanoparticles via iron doping, Journal of Physics And Chemistry of Solids, 157 (2021) 110207.
[65] Y. Dong, J. Zhao, J. Y. Zhang, Y. Chen, X. Yang, W. Song, L. Wei, W. Li, Synergy of Mn and Ni enhanced catalytic performance for toluene combustion over Ni-doped α-MnO2 catalysts, Chemical Engineering Journal, 388 (2020) 124244.
[66] Y. Huang, X. Zhu, D. Wang, S. Hui, Enhanced formaldehyde oxidation over MnO2 and doped manganese-based catalysts: Experimental and theoretical Insights into mechanism and performance, Environmental Research, 238 (2023) 117265.
[67] X. Min, M. Guo, K. Li, J. N. Gu, X. Hu, J. Jia, T. Sun, Boosting the VOCs purification over high-performance α-MnO2 separated from spent lithium-ion battery: Synergistic effect of metal doping and acid treatment, Separation And Purification Technology, 295 (2022) 121316.
[68] L. Wang, Y. Li, J. Liu, Z. Tian, Y. Jing, Regulation of oxygen vacancies in cobalt-cerium oxide catalyst for boosting decontamination of VOCs by catalytic oxidation, Separation And Purification Technology, 277 (2021) 119505.
[69] J. Jia, P. Zhang, L. Chen, Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures, Applied Catalysis B: Environmental, 189 (2016) 210-218.
[70] A. Yusuf, Y. Sun, Y. Ren, C. Snape, C. Wang, H. Jia, J. He, Opposite effects of Co and Cu dopants on the catalytic activities of birnessite MnO2 catalyst for low-temperature formaldehyde oxidation, The Journal of Physical Chemistry C, 124 (2020) 26320-26331.
[71] S. D. Jiang, Z. M. Bai, G. Tang, L. Song, A. A. Stec, T. R. Hull, J. Zhan, Y. Hu, Fabrication of Ce-doped MnO2 decorated graphene sheets for fire safety applications of epoxy composites: flame retardancy, smoke suppression and mechanism, Journal of Materials Chemistry A, 2 (2014) 17341-17351.
[72] K. T. Ng, D. M. Hercules, Studies of nickel-tungsten-alumina catalysts by X-ray photoelectron spectroscopy, The Journal of Physical Chemistry, 80 (1976) 2094-2102.
[73] G. Halada, C. Clayton, Comparison of Mo–N and W–N synergism during passivation of stainless steel through x‐ray photoelectron spectroscopy and electrochemical analysis, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, And Films, 11 (1993) 2342-2347.
[74] S. J. Park, H. K. Yang, B. K. Moon, Ultraviolet to blue blocking and wavelength convertible films using carbon dots for interrupting eye damage caused by general lighting, Nano Energy, 60 (2019) 87-94.
[75] D. M. Applin, M. R. Izawa, E. A. Cloutis, J. J. Gillis-Davis, K. M. Pitman, T. L. Roush, A. R. Hendrix, P. G. Lucey, Ultraviolet spectral reflectance of carbonaceous materials, Icarus, 307 (2018) 40-82.
[76] Y. Meng, H. C. Genuino, C. H. Kuo, H. Huang, S. Y. Chen, L. Zhang, A. Rossi, S. L. Suib, One-step hydrothermal synthesis of manganese-containing MFI-type zeolite, Mn–ZSM-5, characterization, and catalytic oxidation of hydrocarbons, Journal of The American Chemical Society, 135 (2013) 8594-8605.
[77] M. Khatamian, S. Heidari, M. M. Najafpour, Water-oxidizing activity of ZSM-5 type manganosilicate: The importance of the MnOMn bonds, International Journal of Hydrogen Energy, 41 (2016) 14088-14100.
[78] N. Ullah, M. T. Qureshi, A. M. Toufiq, F. Ullah, M. A. Elaimi, R. S. A. Hameed, A. Khan, H. M. E. Ragab, Effect of cobalt doping on the structural, optical and antibacterial properties of α-MnO2 nanorods, Applied Physics A, 127 (2021) 1-7.
[79] A. Khan, A. M. Toufiq, F. Tariq, Y. Khan, R. Hussain, N. Akhtar, S. ur Rahman, Influence of Fe doping on the structural, optical and thermal properties of α-MnO2 nanowires, Materials Research Express, 6 (2019) 065043.
[80] J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng, S. Dong, D. Qi, J. Qiu, X. Chen, T. Wu, High‐performance photothermal conversion of narrow‐bandgap Ti2O3 nanoparticles, Advanced Materials, 29 (2017) 1603730.
[81] M. Gao, L. Zhu, C. K. Peh, G. W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production, Energy & Environmental Science, 12 (2019) 841-864.
[82] H. Zhang, S. Rong, P. Zhang, Photoinduced simultaneous thermal and photocatalytic activities of MnO2 revealed by femtosecond transient absorption spectroscopy, ACS Applied Materials & Interfaces, 13 (2021) 18944-18953.
[83] Y. Huang, Y. Liu, W. Wang, M. Chen, H. Li, S. C. Lee, W. Ho, T. Huang, J. Cao, Oxygen vacancy–engineered δ-MnOx/activated carbon for room-temperature catalytic oxidation of formaldehyde, Applied Catalysis B: Environmental, 278 (2020) 119294.
[84] E. Carter, A. F. Carley, D. M. Murphy, Evidence for O2- radical stabilization at surface oxygen vacancies on polycrystalline TiO2, The Journal of Physical Chemistry C, 111 (2007) 10630-10638.
[85] D. Ding, Y. Zhou, T. He, S. Rong, Facet selectively exposed α-MnO2 for complete photocatalytic oxidation of carcinogenic HCHO at ambient temperature, Chemical Engineering Journal, 431 (2022) 133737.
[86] C. Dong, Z. Qu, X. Jiang, Y. Ren, Tuning oxygen vacancy concentration of MnO2 through metal doping for improved toluene oxidation, Journal of Hazardous Materials, 391 (2020) 122181.

無法下載圖示 全文公開日期 2034/08/05 (校內網路)
全文公開日期 2039/08/05 (校外網路)
全文公開日期 2034/08/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE