簡易檢索 / 詳目顯示

研究生: 邱苾華
Bi-Hua Chiu
論文名稱: 常壓電漿製備於氧化錳負極膜層於鋰離子電池之研究
Study on Fabricating Manganese Oxide Anode Film on Lithium Ion Battery by Atmospheric Pressure Plasma Jet
指導教授: 郭俞麟
Yu-Lin Kuo
王復民
Fu-Ming Wang
口試委員: 劉偉仁
Wei-Ren Liu
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 110
中文關鍵詞: 常壓電漿噴射束(APPJ)鋰離子電池氧化錳鍍膜層負極材料
外文關鍵詞: Atmospheric Pressure Plasma Jet, Lithium-ion batteries, Manganese thin films, Anode material
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池是為近年來持續受到關注之議題,製備快速且具有優良的效能的電極成為研究學者們的目標,而常壓電漿產業也因可提供快速與簡易的鍍膜、表面改質等特點受到矚目。錳氧化物是許多產業所使用的材料之一,因錳氧化物易於生產且穩定,經常應用在電池領域中。但是常見之鋰離子電池負極材料多為矽材或碳類材料添加以提升電池性能,極少數使用薄膜方式一步製備電極。
    在本研究中,使用常壓電漿噴射束與前驅物四水合硝酸錳在碳類基材上沉積電極材料,且透過添加葡萄糖改善顆粒粒徑,而後檢測膜層材料特性分析與電化學性能。結果分析使用X光繞射儀進行材料鑑定,掃描式電子顯微鏡觀察表面形貌,薄膜附著性透過方格試驗,熱重分析分析材料熱裂解溫度,充放電試驗檢測效能,電化學阻抗分析得知電極效用。
    結果顯示透過常壓電漿鍍膜一步法製備之負極膜層電極,可沉積α-Mn2O3薄膜,其具有4B等級之附著性能,而在結構上添加葡萄糖 (P-MG)可有效提升結晶性,以及經由計算可知顆粒粒徑大小由原始500 nm縮小至300 nm,縮小粒徑更有利於鋰離子嵌入與嵌出。在後續的電池分析中可知未添加葡萄糖(P-M)之負極首圈電容量1765 mAh/g,且在第五圈充放電後藉由XRD檢測得知,結構無序化無法提供完整充放電之條件;添加葡萄糖之負極(P-MG)在首圈電容量為2277 mAh/g,提供穩定之結構緩解電容急速衰退的問題。
    此研究表明,透過常壓電漿鍍膜鋰離子電池負極膜層之方法具有實用性能,不僅減少製備電極之時間,也簡化製備過程,以達到效果,實現了一步法製備電極材料之應用。


    In recent years, the lithium-ion battery has become an issue of concern. The main goals of in field of the lithium-ion battery are fast preparation and excellent efficiency electrode. Atmospheric pressure plasma jet (APPJ) can provide a high speed of coating and surface treatment. In this study, APPJ and the precursor of manganese(II) nitrate tetrahydrate to deposit electrode material on the carbon-based substrate is used. As adding glucose into the precursor, the particle size has been significantly decreased. The crystalline structure of the prepared material is detected by X-ray diffraction (XRD). The surface morphology is observed by scanning electron microscopy (SEM). The Cross-Cut Test (ACCT) is used to test the adhesion characteristic of the deposited film. The material of the thermal pyrolysis temperature is measured by thermogravimetric analysis (TGA). The efficiency of the battery is tested by charging and discharging in a electrochemical station and an electrochemical impedance spectroscopy (EIS).

    These results show that the rapid synthesis of manganese thin films in a one-step process via APPJ is achieved. It cab be indicated that the films coated with Mn2O3 prepared by APPJ exhibit a superior adhesion performance, while adding glucose (P-MG) into the precursor can increase the crystallinity. Furthermore, the particle size can be decreased to intercalate and deintercalate in the lithium-ion battery. Also, the particle size becomes smaller from 500 nm to 300 nm. In electrochemical performacne, the first charge-discharge (C–D) cycling performance data is 1765 mAh/g without adding glucose (P-M) while the first cycle of capacity is 2277 mAh/g by adding glucose (P-MG) into the precursor. The effect of glucose addition provides stable structure to improve the degradation of capacity. In conclusion, APPJ provides an efficient method of coating in the lithium-ion battery. It decreases the time-consuming preparation and simplifies the preparation process. The application of electrode material is successfully achieved.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1前言 1 1.2鋰離子電池 2 1.3實驗動機與目的 4 第二章 文獻回顧 5 2.1電池簡介 5 2.2化學電池原理 7 2.3鋰離子二次電池工作原理 7 2.3.1負極(陽極)材料 11 2.3.2電解質 16 2.3.3正極(陰極)材料 18 2.3.4 集流板 21 2.3.5 錳氧化物之三氧化二錳 24 2.3.6葡萄糖 26 2.4電漿簡介 27 2.4.1電漿工作原理 30 2.4.2電漿鍍膜技術 33 第三章 實驗方法與儀器設備 35 3.1實驗藥品 35 3.2實驗設備 35 3.3實驗程序 36 3.3.1前驅物四水合硝酸錳水溶液之置備 37 3.3.2前驅物四水合硝酸錳與一水合葡萄糖水溶液之置備 37 3.3.2大氣電漿系統設定 37 3.3.3鈕扣型電池組裝方法 38 3.4材料鑑定與分析方法 39 3.4.1 X光繞射儀(X-ray Diffractometer Spectrometer,XRD) 39 3.4.2掃描電子顯微鏡(Scanning Electron Microscope, SEM) 40 3.4.3能量散射光譜儀 (Energy Dispersive Spectrometer, EDS) 40 3.4.4光學放射光譜儀(Optical Emission Spectroscopy, OES) 40 3.4.5拉曼光譜試驗(Ramam) 41 3.4.6熱重分析(Thermogravimetric analysis, TGA) 41 3.4.7方格試驗(Adhesion Cross-Cut Test, ACCT) 41 3.4.8傅立葉轉換紅外線光譜(Fourier-transform infrared spectroscopy, FTIR) 43 3.4.9交流阻抗分析(Electrochemical Impedance Spectroscopy, EIS) 46 3.4.10鈕扣型電池充放電測試分析 47 3.4.11電漿溫度量測 48 第四章 結果與討論 49 4.1材料分析結果 49 4.1.1電漿內部物種及溫度量測分析(OES分析/電漿溫度量測) 49 4.1.2前驅物霧化水滴之計算 53 4.1.3水滴接觸角分析 55 4.1.4 ACCT 57 4.1.5 TGA 59 4.1.6 FTIR 61 4.1.7 Raman 63 4.1.8 XRD 64 4.1.9 SEM 66 4.2電池測試結果 72 4.2.1充放電數據 72 4.2.2壽命循環 76 4.2.3 EIS 78 4.2.4 XRD 83 4.2.5 SEM 85 第五章 結論 87 第六章 未來與展望 89 參考文獻 90

    [1] O. Hoegh-Guldberg, D. Jacob, M. Bindi, S. Brown, I. Camilloni, A. Diedhiou, R. Djalante, K. Ebi, F. Engelbrecht, J. Guiot, "Impacts of 1.5 C global warming on natural and human systems", Global warming of 1.5° C. An IPCC Special Report, (2018).
    [2] G. E. Blomgren, "The development and future of lithium ion batteries", Journal of The Electrochemical Society, vol. 164, no. 1, p. A5019, (2016).
    [3] 李文雄, 「鋰電池 E世代的能源」,科學發展, pp. 32-35, (2003).
    [4] L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, "A review on the key issues for lithium-ion battery management in electric vehicles", Journal of power sources, vol. 226, pp. 272-288, (2013).
    [5] 吳栢妤, ''IT需求持續/電動車看漲 鋰離子電池市場穩步成長'', https://www.2cm.com.tw/2cm/zhtw/market/DCDF8CDDEF334AC084A3A275FF259091, (2019).
    [6] B. Scrosati, "History of lithium batteries", Journal of solid state electrochemistry, vol. 15, no. 7-8, pp. 1623-1630, (2011).
    [7] J. Benz, B. Ortiz, W. Roth, D. Sauer, A. Steinhüser, "Fuel cells in photovoltaic hybrid systems for stand-alone power supplies", 2nd European PV-Hybrid and Mini-Grid Conference, pp. 232-239, (2003).
    [8] 程新群, 「化學電源」,化學工業出版社, (2008).
    [9] "鋰電池分析-充放電與循環", 微電能實驗室.
    [10] 曾致暉,「電池檢視與控制器之研究」, 碩士論文, 工學院精密與自動化工程學程, 國立交通大學, (2012).
    [11] 黃可龍、王兆翔、劉素琴, 「鋰離子電池原理與關鍵技術」,化學工業出版社, (2007).
    [12] G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, "The lithium-ion battery: State of the art and future perspectives", Renewable and Sustainable Energy Reviews, vol. 89, pp. 292-308, (2018).
    [13] J.-M. Tarascon, M. Armand, "Issues and challenges facing rechargeable lithium batteries", Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, pp. 171-179, (2011).
    [14] S. Chandrashekar, N. M. Trease, H. J. Chang, L.-S. Du, C. P. Grey, A. Jerschow, "7 Li MRI of Li batteries reveals location of microstructural lithium", Nature materials, vol. 11, no. 4, pp. 311-315, (2012).
    [15] R. Bhattacharyya, B. Key, H. Chen, A. S. Best, A. F. Hollenkamp, C. P. Grey, "In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries", Nature materials, vol. 9, no. 6, pp. 504-510, (2010).
    [16] K. N. Wood, E. Kazyak, A. F. Chadwick, K.-H. Chen, J.-G. Zhang, K. Thornton, N. P. Dasgupta, "Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy", ACS central science, vol. 2, no. 11, pp. 790-801, (2016).
    [17] D. Aurbach, E. Zinigrad, H. Teller, P. Dan, "Factors which limit the cycle life of rechargeable lithium (metal) batteries", Journal of The Electrochemical Society, vol. 147, no. 4, p. 1274, (2000).
    [18] A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, "Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries", npj Computational Materials, vol. 4, no. 1, pp. 1-26, (2018).
    [19] M. Winter, "The solid electrolyte interphase–the most important and the least understood solid electrolyte in rechargeable Li batteries", Zeitschrift für physikalische Chemie, vol. 223, no. 10-11, pp. 1395-1406, (2009).
    [20] K. Xu, "Electrolytes and interphases in Li-ion batteries and beyond", Chemical reviews, vol. 114, no. 23, pp. 11503-11618, (2014).
    [21] J. Zheng, H. Zheng, R. Wang, L. Ben, W. Lu, L. Chen, L. Chen, H. Li, "3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries", Physical Chemistry Chemical Physics, vol. 16, no. 26, pp. 13229-13238, (2014).
    [22] MSE Supplies Admin ''Source of Detrimental Dendrite Growth in Lithium Batteries Discovered'',
    https://www.msesupplies.com/blogs/news/source-of-detrimental-dendrite-growth-in-lithium-batteries-discovered (2019).
    [23] X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, "Toward safe lithium metal anode in rechargeable batteries: a review", Chemical reviews, vol. 117, no. 15, pp. 10403-10473, (2017).
    [24] J. J. Arroyo Gómez, "Formación por vía electroquímica de materiales metálicos nanoestructurados", (2016).
    [25] M. Yoshio, H. Wang, K. Fukuda, T. Umeno, T. Abe, Z. Ogumi, "Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere", Journal of Materials Chemistry, vol. 14, no. 11, pp. 1754-1758, (2004).
    [26] W.-S. Kim, J. Choi, S.-H. Hong, "Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery", Nano Research, vol. 9, no. 7, pp. 2174-2181, (2016).
    [27] S. Chen, L. Shen, P. A. van Aken, J. Maier, Y. Yu, "Dual‐functionalized double carbon shells coated silicon nanoparticles for high performance lithium‐ion batteries", Advanced Materials, vol. 29, no. 21, p. 1605650, (2017).
    [28] Q. Zhou, M. Zeng, X. Wu, Y. Zhang, G. Qin, "Hierarchically porous core-shell microspheres assembled from Mn2O3/TiO2 nanoparticles for enhanced lithium storage", Journal of Alloys and Compounds, vol. 786, pp. 368-376, (2019).
    [29] J. Yi, S. Guo, P. He, H. Zhou, "Status and prospects of polymer electrolytes for solid-state Li–O2 (air) batteries", Energy & Environmental Science, vol. 10, no. 4, pp. 860-884, (2017).
    [30] M. Kotobuki, S.-f. Song, C. Chao, L. Lu, ''Ceramic Electrolytes for All-Solid-State Li Batteries'', World Scientific, (2018).
    [31] M. Armand, J. Chabagno, M. Duclot, "Second international meeting on solid electrolytes", St Andrews, Scotland, pp. 20-22, (1978).
    [32] F. M. Gray, F. M. Gray, ''Solid polymer electrolytes: fundamentals and technological applications'', VCH New York, (1991).
    [33] O. Bohnke, C. Rousselot, P. Gillet, C. Truche, "Gel Electrolyte for Solid‐State Electrochromic Cell", Journal of the Electrochemical Society, vol. 139, no. 7, p. 1862, (1992).
    [34] F. Croce, S. D. Brown, S. G. Greenbaum, S. M. Slane, M. Salomon, "Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on polyacrylonitrile", Chemistry of materials, vol. 5, no. 9, pp. 1268-1272, (1993).
    [35] P. Stallworth, J. Li, S. Greenbaum, F. Croce, S. Slane, M. Salomon, "Sodium-23 NMR and complex impedance studies of gel electrolytes based on poly (acrylonitrile)", Solid State Ionics, vol. 73, no. 1-2, pp. 119-126, (1994).
    [36] P. Stallworth, S. Greenbaum, F. Croce, S. Slane, M. Salomon, "Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly (methylmethacrylate)", Electrochimica acta, vol. 40, no. 13-14, pp. 2137-2141, (1995).
    [37] J. Song, Y. Wang, C. C. Wan, "Review of gel-type polymer electrolytes for lithium-ion batteries", Journal of power sources, vol. 77, no. 2, pp. 183-197, (1999).
    [38] J. C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, "Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction", Chemical reviews, vol. 116, no. 1, pp. 140-162, (2016).
    [39] K. Meng, Z. Wang, H. Guo, X. Li, D. Wang, "Improving the cycling performance of LiNi0.8Co0.1Mn0.1O2 by surface coating with Li2TiO3", Electrochimica Acta, vol. 211, pp. 822-831, (2016).
    [40] B. Song, W. Li, S.-M. Oh, A. Manthiram, "Long-life nickel-rich layered oxide cathodes with a uniform Li2ZrO3 surface coating for lithium-ion batteries", ACS Applied Materials & Interfaces, vol. 9, no. 11, pp. 9718-9725, (2017).
    [41] T.-F. Yi, P.-P. Peng, Z. Fang, Y.-R. Zhu, Y. Xie, S. Luo, "Carbon-coated LiMn1-xFexPO4 (0≤ x≤ 0.5) nanocomposites as high-performance cathode materials for Li-ion battery", Composites Part B: Engineering, vol. 175, p. 107067, (2019).
    [42] C. Wang, D. Li, C. O. Too, G. G. Wallace, "Electrochemical properties of graphene paper electrodes used in lithium batteries", Chemistry of Materials, vol. 21, no. 13, pp. 2604-2606, (2009).
    [43] T. O. Ely, D. Kamzabek, D. Chakraborty, "Batteries safety: Recent progress and current challenges", (2019).
    [44] K. Kanamura, T. Umegaki, S. Shiraishi, M. Ohashi, Z.-i. Takehara, "Electrochemical Behavior of Al Current Collector of Rechargeable Lithium Batteries in Propylene Carbonate with LiCF3SO3, Li (CF3SO2)2N, or Li (C4F9SO 2)(CF3SO2) N", Journal of the Electrochemical Society, vol. 149, no. 2, p. A185, (2002).
    [45] X. Wang, E. Yasukawa, S. Mori, "Inhibition of anodic corrosion of aluminum cathode current collector on recharging in lithium imide electrolytes", Electrochimica Acta, vol. 45, no. 17, pp. 2677-2684, (2000).
    [46] J. Garche, C. K. Dyer, P. T. Moseley, Z. Ogumi, D. A. Rand, B. Scrosati, ''Encyclopedia of electrochemical power sources'', Newnes, (2013).
    [47] L. J. Krause, W. Lamanna, J. Summerfield, M. Engle, G. Korba, R. Loch, R. Atanasoski, "Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells", Journal of power sources, vol. 68, no. 2, pp. 320-325, (1997).
    [48] X. Gu, J. Yue, L. Li, H. Xue, J. Yang, X. Zhao, "General synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes", Electrochimica Acta, vol. 184, pp. 250-256, (2015).
    [49] J. Gao, M. A. Lowe, H. D. Abruna, "Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries", Chemistry of Materials, vol. 23, no. 13, pp. 3223-3227, (2011).
    [50] J. Yue, X. Gu, L. Chen, N. Wang, X. Jiang, H. Xu, J. Yang, Y. Qian, "General synthesis of hollow MnO2, Mn3O4 and MnO nanospheres as superior anode materials for lithium ion batteries", Journal of Materials Chemistry A, vol. 2, no. 41, pp. 17421-17426, (2014).
    [51] S. Meng, W. Yan, X. Ma, D. Sun, Y. Jin, K. He, "Hierarchical structured Mn2O3 nanomaterials with excellent electrochemical properties for lithium ion batteries", RSC advances, vol. 9, no. 3, pp. 1284-1289, (2019).
    [52] 陳仁慶,「錳離子在人工錳砂表面吸附反應之研究」, 碩士論文, 環境工程學系, 國立中興大學, (2002).
    [53] 宋怡葶、楊文都, 「製備錳氧化物及其性質研究」,工程科技與教育學刊, pp. 307-311, (2012).
    [54] Y.-C. Zhang, J.-T. Li, Z.-G. Wu, L. Huang, S.-G. Sun, "Synthesis of hierarchical spindle-like Mn2O3 for lithium ion batteries with enhanced lithium storage properties", Journal of Alloys and Compounds, vol. 721, pp. 229-235, (2017).
    [55] H. Su, Y.-F. Xu, S.-C. Feng, Z.-G. Wu, X.-P. Sun, C.-H. Shen, J.-Q. Wang, J.-T. Li, L. Huang, S.-G. Sun, "Hierarchical Mn2O3 hollow microspheres as anode material of lithium ion battery and its conversion reaction mechanism investigated by XANES", ACS Applied Materials & Interfaces, vol. 7, no. 16, pp. 8488-8494, (2015).
    [56] J.-Q. Li, F.-C. Zhou, Y.-H. Sun, J.-M. Nan, "FeMnO3 porous nanocubes/Mn2O3 nanotubes hybrids derived from Mn3 [Fe (CN)6]2· nH2O Prussian blue analogues as an anode material for lithium-ion batteries", Journal of Alloys and Compounds, vol. 740, pp. 346-354, (2018).
    [57] X. Shen, Z. Ji, H. Miao, J. Yang, K. Chen, "Hydrothermal synthesis of MnCO3 nanorods and their thermal transformation into Mn2O3 and Mn3O4 nanorods with single crystalline structure", Journal of Alloys and Compounds, vol. 509, no. 18, pp. 5672-5676, (2011).
    [58] D. Stevens, J. Dahn, "High capacity anode materials for rechargeable sodium‐ion batteries", Journal of the Electrochemical Society, vol. 147, no. 4, p. 1271, (2000).
    [59] H. Chan, Y. Do, P. Huang, P. Chien, T. Chan, R. Liu, C. Huang, S.-Y. Yang, H.-E. Horng, "Preparation and properties of bio-compatible magnetic Fe3O4 nanoparticles", Journal of Magnetism and Magnetic Materials, vol. 304, no. 1, pp. e415-e417, (2006).
    [60] ''What's the difference between alpha and beta glucose?'',
    https://www.worldofmolecules.com/3D/what-is-the-difference-between-alpha-and-beta-glucose.html
    [61] 謝錦龍, 「電漿與極光」,國家奈米元件實驗室奈米通訊, pp. 36-37, (2013).
    [62] 張家豪、魏鴻文、翁政輝、柳克強、李安平、寇崇善、吳敏文、曾錦清、蔡文發、鄭國川, 「電漿源原理與應用之介紹」,物理雙月刊, pp. 440-451, (2006).
    [63] 朱俊霖, 「電漿與蝕刻」,國家奈米元件實驗室奈米通訊, pp. 27-29, (2015).
    [64] 黃立姍,「利用射頻常壓電漿束改質磷酸鋰鐵材料應用於鋰離子電池之研究」, 碩士論文, 機械工程系, 國立臺灣科技大學, (2014).
    [65] Y.-L. Kuo, K.-H. Chang, T.-S. Hung, K.-S. Chen, N. Inagaki, "Atmospheric-pressure plasma treatment on polystyrene for the photo-induced grafting polymerization of N-isopropylacrylamide", Thin Solid Films, vol. 518, no. 24, pp. 7568-7573, (2010).
    [66] N. Inagaki, ''Plasma surface modification and plasma polymerization'', CRC Press, (1996).
    [67] R. Belford, S. Sood, "Surface activation using remote plasma for hydrophilic bonding at elevated temperature", Electrochemical and Solid State Letters, vol. 10, no. 5, p. H145, (2007).
    [68] 陳冠霖,「載氣流量效應於常壓電漿噴射束沉積氧化矽薄膜特性與抗腐蝕能力之研究」, 碩士論文, 機械工程系, 國立臺灣科技大學, (2015).
    [69] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, "Atmospheric pressure plasmas: A review", Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, no. 1, pp. 2-30, (2006).
    [70] 徐逸明、洪昭南、游閔盛、郭有斌、黃傑, 「常壓電漿原理、技術與應用」,化工技術, pp. 65-85, (2009).
    [71] A. Grill, ''Cold plasma in materials fabrication'', IEEE Press, p. 151, (1994).
    [72] J. A. Bittencourt, ''Fundamentals of plasma physics'', Springer Science & Business Media, (2013).
    [73] A. Zhou, Y. Lu, Q. Wang, J. Xu, W. Wang, X. Dai, J. Li, "Sputtering TiO2 on LiCoO2 composite electrodes as a simple and effective coating to enhance high-voltage cathode performance", Journal of Power Sources, vol. 346, pp. 24-30, (2017).
    [74] X. Fan, G. Darut, M. P. Planche, C. Song, H. Liao, G. Montavon, "Preparation and characterization of aluminum-based coatings deposited by very low-pressure plasma spray", Surface and Coatings Technology, vol. 380, p. 125034, (2019).
    [75] P. Bijalwan, A. Kumar, S. K. Nayak, A. Banerjee, M. Dutta, T. Laha, "Microstructure and corrosion behavior of Fe-based amorphous composite coatings developed by atmospheric plasma spraying", Journal of Alloys and Compounds, vol. 796, pp. 47-54, (2019).
    [76] A. Khangholi, R. I. Revilla, A. Lutz, S. Loulidi, E. Rogge, G. Van Assche, I. De Graeve, "Electrochemical characterization of plasma coatings on printed circuit boards", Progress in Organic Coatings, vol. 137, p. 105256, (2019).
    [77] M. Thukkaram, P. Cools, A. Nikiforov, P. Rigole, T. Coenye, P. Van Der Voort, G. Du Laing, C. Vercruysse, H. Declercq, R. Morent, "Antibacterial activity of a porous silver doped TiO2 coating on titanium substrates synthesized by plasma electrolytic oxidation", Applied Surface Science, vol. 500, p. 144235, (2020).
    [78] S. Phil, "Finish coatings system adhesion and test methods", Wood Digest’s Finishing, pp. 18-20, (2003).
    [79] G. Trelane., "INFRARED SPECTROSCOPY ", (2007).
    [80] ''INFRARED SPECTROSCOPY '',
    https://personal.utdallas.edu/~scortes/ochem/OChem_Lab1/recit_notes/ir_presentation.pdf
    [81] 胡啟章, 「電化學原理與方法」,五南圖書出版股份有限公司, (2002).
    [82] J. R. Macdonald, E. Barsoukov, "Impedance spectroscopy: theory, experiment, and applications", History, vol. 1, no. 8, pp. 1-13, (2005).
    [83] M. Fahad, A. Sajad, Y. Iqbal, "Plasma diagnostics by optical emission spectroscopy on manganese ore in conjunction with XRD, XRF and SEM-EDS", Plasma Science and Technology, vol. 21, no. 8, p. 085507, (2019).
    [84] S. Sakka, H. Kozuka, ''Handbook of sol-gel science and technology. 1. Sol-gel processing'', Springer Science & Business Media, (2005).
    [85] 姜瀚盛,「以奈米碳管/奈米碳纖維之複合材料應用於鋰電池負極之研究」, 碩士論文, 化學工程學系, 國立成功大學, (2014).
    [86] E. d. Stobbe, B. De Boer, J. Geus, "The reduction and oxidation behaviour of manganese oxides", Catalysis Today, vol. 47, no. 1-4, pp. 161-167, (1999).
    [87] J. Lai, H. Guo, Z. Wang, X. Li, X. Zhang, F. Wu, P. Yue, "Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries", Journal of Alloys and Compounds, vol. 530, pp. 30-35, (2012).
    [88] H. Rahaman, R. M. Laha, D. K. Maiti, S. K. Ghosh, "Electronic Supplementary Information Fabrication of Mn2O3 nanorods: An efficient catalyst for selective transformation of alcohols to aldehydes".
    [89] R. Naeem, M. A. Ehsan, R. Yahya, M. Sohail, H. Khaledi, M. Mazhar, "Fabrication of pristine Mn2O3 and Ag–Mn2O3 composite thin films by AACVD for photoelectrochemical water splitting", Dalton Transactions, vol. 45, no. 38, pp. 14928-14939, (2016).
    [90] Y.-F. Han, K. Ramesh, L. Chen, E. Widjaja, S. Chilukoti, F. Chen, "Observation of the reversible phase-transformation of α-Mn2O3 nanocrystals during the catalytic combustion of methane by in situ Raman spectroscopy", The Journal of Physical Chemistry C, vol. 111, no. 7, pp. 2830-2833, (2007).
    [91] W. Susingrat, T. Sarakonsri, N. Jarulertwathana, J. Jakmunee, K. D. Pham, C. Hoeil, "Electron Microscopy Investigation of FeNi/NrGO Nanocomposite Catalysts for Fuel Cells Application", Journal of Materials Science and Engineering A, vol. 7, no. 7-8, pp. 178-187, (2017).
    [92] Q. Chen, F. Lu, Y. Xia, H. Wang, X. Kuang, "Interlayer expansion of few-layered Mo-doped SnS2 nanosheets grown on carbon cloth with excellent lithium storage performance for lithium ion batteries", Journal of Materials Chemistry A, vol. 5, no. 8, pp. 4075-4083, (2017).
    [93] H. Long, T. Shi, H. Hu, S. Jiang, S. Xi, Z. Tang, "Growth of hierarchal mesoporous NiO nanosheets on carbon cloth as binder-free anodes for high-performance flexible lithium-ion batteries", Scientific reports, vol. 4, p. 7413, (2014).
    [94] G. L. Messing, S. C. Zhang, G. V. Jayanthi, "Ceramic powder synthesis by spray pyrolysis", Journal of the American Ceramic Society, vol. 76, no. 11, pp. 2707-2726, (1993).
    [95] H.-q. Wang, X.-p. Fan, X.-h. Zhang, Y.-g. Huang, Q. Wu, Q.-c. Pan, Q.-y. Li, "In situ growth of NiO nanoparticles on carbon paper as a cathode for rechargeable Li–O2 batteries", RSC advances, vol. 7, no. 38, pp. 23328-23333, (2017).
    [96] Z. Yu, T. Yu, W. Li, J. Hao, H. Liu, N. Sun, M. Lu, J. Ma, "Improved electrochemical performances of carbon-coated Li2MoO3 cathode materials for Li-ion batteries", Int. J. Electrochem. Sci, vol. 13, pp. 4504-4511, (2018).
    [97] 羅傑民,「碳-矽複合負極材料的製備應用於鋰離子電池之研究」, 學士論文, 化學工程學研究所, 國立臺灣大學, (2015).
    [98] S. Shi, S. Deng, M. Zhang, M. Zhao, G. Yang, "Rapid microwave synthesis of self-assembled hierarchical Mn2O3 microspheres as advanced anode material for lithium ion batteries", Electrochimica Acta, vol. 224, pp. 285-294, (2017).
    [99] 林逸朗,「以LiClO4為電解質的磷酸鋰釩電池充放電之研究」, 碩士論文, 物理學系所, 國立中興大學, (2015).
    [100]A. Vázquez-Olmos, R. Redón, G. Rodríguez-Gattorno, M. E. Mata-Zamora, F. Morales-Leal, A. L. Fernández-Osorio, J. M. Saniger, "One-step synthesis of Mn3O4 nanoparticles: Structural and magnetic study", Journal of colloid and interface science, vol. 291, no. 1, pp. 175-180, (2005).

    無法下載圖示 全文公開日期 2025/08/06 (校內網路)
    全文公開日期 2025/08/06 (校外網路)
    全文公開日期 2025/08/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE