簡易檢索 / 詳目顯示

研究生: 馬永發
Saranachon Iammongkol
論文名稱: 透過封包間隔時間的密度估計實現SCADA系統的網路入侵檢測
Network intrusion detection for SCADA systems using density estimation of packet inter-arrival time
指導教授: 李漢銘
Hahn-Ming Lee
鄭欣明
Shin-Ming Cheng
口試委員: 黃俊穎
蕭旭君
毛敬豪
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 59
中文關鍵詞: Cyber SecuritySCADA systemsIndustrial Control SystemsNetwork Intrusion Detection
外文關鍵詞: Cyber Security, SCADA systems, Industrial Control Systems, Network Intrusion Detection
相關次數: 點閱:201下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Critical infrastructure and manufacturing use distributed systems for processing data collectedfrom sensors networks and control physical actuators which usually known as SCADA
    Systems. System malfunction can be devastating which cost time, money, or even human
    life. Our paper aim to overcome two challenges in SCADA systems security: (1.) The
    systems require to satisfy hard timing constraint and low resource is provided by robust
    industrial equipments. (2.) Most of the time, the data available from SCADA systems
    are unbalanced. To achieve our target, we focused on the SCADA system’s unique cyclic
    communication characteristic. We found that it can be explained using theory of PLCautomata. We then analyze the timing constraints in HMI and PLC communication which
    show that the inter­arrival time of packets between devices contains the footprint of system
    state transitions. We propose a network­based anomaly detection algorithm for SCADA
    system using benign inter­arrival time only. Experimental evaluation on public MODBUS
    dataset from IEEE Dataport.


    Critical infrastructure and manufacturing use distributed systems for processing data collectedfrom sensors networks and control physical actuators which usually known as SCADA
    Systems. System malfunction can be devastating which cost time, money, or even human
    life. Our paper aim to overcome two challenges in SCADA systems security: (1.) The
    systems require to satisfy hard timing constraint and low resource is provided by robust
    industrial equipments. (2.) Most of the time, the data available from SCADA systems
    are unbalanced. To achieve our target, we focused on the SCADA system’s unique cyclic
    communication characteristic. We found that it can be explained using theory of PLCautomata. We then analyze the timing constraints in HMI and PLC communication which
    show that the inter­arrival time of packets between devices contains the footprint of system
    state transitions. We propose a network­based anomaly detection algorithm for SCADA
    system using benign inter­arrival time only. Experimental evaluation on public MODBUS
    dataset from IEEE Dataport.

    Recommendation Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Challenges and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Background and Related works . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Critical Infrastructure Cyber Security . . . . . . . . . . . . . . . . . . . 4 2.2 Industrial Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 SCADA based Control Systems . . . . . . . . . . . . . . . . . . 4 2.2.2 DCS based Control Systems . . . . . . . . . . . . . . . . . . . . 4 2.2.3 PLC based Control Systems . . . . . . . . . . . . . . . . . . . . 5 2.3 Real­time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 PLC Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 v2.5 PLC’s operating systems . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.6 Duration Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.7 PLC­automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.8 MODBUS Network Intrusion Detection Systems (NIDS) . . . . . . . . . 13 2.8.1 Machine learning based MODBUS Network Intrusion Detection Systems (NIDS) . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.8.2 Automaton based MODBUS Network Intrusion Detection Systems (NIDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Implementation and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.1 Inter­arrival time anomaly . . . . . . . . . . . . . . . . . . . . . 21 3.1.2 Training Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.3 Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.3 Result analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.4 Resource consumption . . . . . . . . . . . . . . . . . . . . . . . 37 4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1 Experiment Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    [1] M. Tiegelkamp and K.­H. John, IEC 61131­3: Programming industrial automation systems. Springer, 2010.
    [2] I. F. P. A. T. C. H. A. P. Simões, “Cyber­security modbus ics dataset,” 2019.
    [3] K. E. Hemsley, E. Fisher, et al., “History of industrial control system cyber incidents,” tech. rep., Idaho National Lab.
    (INL), Idaho Falls, ID (United States), 2018.
    [4] E.­R. Olderog and H. Dierks, Real­time systems: formal specification and automatic verification. Cambridge University
    Press, 2008.
    [5] S. V. B. Rakas, M. D. Stojanović, and J. D. Marković­Petrović, “A review of research work on network­based scada
    intrusion detection systems,” IEEE Access, vol. 8, pp. 93083–93108, 2020.
    [6] A. Shlomo, M. Kalech, and R. Moskovitch, “Temporal pattern­based malicious activity detection in scada systems,”
    Computers & Security, vol. 102, p. 102153, 2021.
    [7] C. Sheng, Y. Yao, Q. Fu, and W. Yang, “A cyber­physical model for scada system and its intrusion detection,” Computer
    Networks, vol. 185, p. 107677, 2021.
    [8] H. Dierks, “Plc­automata: a new class of implementable real­time automata,” Theoretical Computer Science, vol. 253,
    no. 1, pp. 61–93, 2001.
    [9] L. H. Yoong, P. S. Roop, Z. E. Bhatti, and M. M. Kuo, Model­driven design using IEC 61499: a synchronous approach
    for embedded and automation systems. Springer, 2014.
    [10] F. Pukelsheim, “The three sigma rule,” The American Statistician, vol. 48, no. 2, pp. 88–91, 1994.
    [11] I. Frazão, P. H. Abreu, T. Cruz, H. Araújo, and P. Simões, “Denial of service attacks: Detecting the frailties of machine
    learning algorithms in the classification process,” in Critical Information Infrastructures Security (E. Luiijf, I. Žutautaitė,
    and B. M. Hämmerli, eds.), (Cham), pp. 230–235, Springer International Publishing, 2019.
    [12] Z. Chaochen, C. A. R. Hoare, and A. P. Ravn, “A calculus of durations,” Information processing letters, vol. 40, no. 5,
    pp. 269–276, 1991.
    [13] N. Erez and A. Wool, “Control variable classification, modeling and anomaly detection in modbus/tcp scada systems,”
    International Journal of Critical Infrastructure Protection, vol. 10, pp. 59–70, 2015.
    [14] A. Al Balushi, K. McLaughlin, and S. Sezer, “Oscids: An ontology based scada intrusion detection framework.,” in
    SECRYPT, pp. 327–335, 2016.
    [15] A. Almalawi, A. Fahad, Z. Tari, A. Alamri, R. AlGhamdi, and A. Y. Zomaya, “An efficient data­driven clustering technique to detect attacks in scada systems,” IEEE Transactions on Information Forensics and Security, vol. 11, no. 5,
    pp. 893–906, 2015.
    [16] T. Cruz, L. Rosa, J. Proença, L. Maglaras, M. Aubigny, L. Lev, J. Jiang, and P. Simoes, “A cybersecurity detection
    framework for supervisory control and data acquisition systems,” IEEE Transactions on Industrial Informatics, vol. 12,
    no. 6, pp. 2236–2246, 2016.
    [17] E. G. da Silva, A. S. da Silva, J. A. Wickboldt, P. Smith, L. Z. Granville, and A. Schaeffer­Filho, “A one­class nids for
    sdn­based scada systems,” in 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC),
    vol. 1, pp. 303–312, IEEE, 2016.
    [18] J. Zhang, S. Gan, X. Liu, and P. Zhu, “Intrusion detection in scada systems by traffic periodicity and telemetry analysis,”
    in 2016 IEEE Symposium on Computers and Communication (ISCC), pp. 318–325, IEEE, 2016.
    [19] C. Feng, T. Li, and D. Chana, “Multi­level anomaly detection in industrial control systems via package signatures and
    lstm networks,” in 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
    pp. 261–272, IEEE, 2017.
    41[20] M. Wan, W. Shang, and P. Zeng, “Double behavior characteristics for one­class classification anomaly detection in networked control systems,” IEEE Transactions on Information Forensics and Security, vol. 12, no. 12, pp. 3011–3023,
    2017.
    [21] A. Hijazi, A. El Safadi, and J.­M. Flaus, “A deep learning approach for intrusion detection system in industry network.,”
    in BDCSIntell, pp. 55–62, 2018.
    [22] I. A. Khan, D. Pi, Z. U. Khan, Y. Hussain, and A. Nawaz, “Hml­ids: A hybrid­multilevel anomaly prediction approach
    for intrusion detection in scada systems,” IEEE Access, vol. 7, pp. 89507–89521, 2019.
    [23] K. Kuchar, R. Fujdiak, P. Blazek, Z. Martinasek, and E. Holasova, “Simplified method for fast and efficient incident
    detection in industrial networks,” in 2020 4th Cyber Security in Networking Conference (CSNet), pp. 1–3, IEEE, 2020.
    [24] G. Ravikumar, A. Singh, J. R. Babu, M. Govindarasu, et al., “D­ids for cyber­physical der modbus system­architecture,
    modeling, testbed­based evaluation,” in 2020 Resilience Week (RWS), pp. 153–159, IEEE, 2020.
    [25] P. Radoglou­Grammatikis, I. Siniosoglou, T. Liatifis, A. Kourouniadis, K. Rompolos, and P. Sarigiannidis, “Implementation and detection of modbus cyberattacks,” in 2020 9th International Conference on Modern Circuits and Systems
    Technologies (MOCAST), pp. 1–4, IEEE, 2020.
    [26] W. Wang, J. Guo, Z. Wang, H. Wang, J. Cheng, C. Wang, M. Yuan, J. Kurths, X. Luo, and Y. Gao, “Abnormal flow
    detection in industrial control network based on deep reinforcement learning,” Applied Mathematics and Computation,
    vol. 409, p. 126379, 2021.
    [27] N. Goldenberg and A. Wool, “Accurate modeling of modbus/tcp for intrusion detection in scada systems,” International
    Journal of Critical Infrastructure Protection, vol. 6, no. 2, pp. 63–75, 2013.
    [28] J. Goh, S. Adepu, K. N. Junejo, and A. Mathur, “A dataset to support research in the design of secure water treatment
    systems,” in International conference on critical information infrastructures security, pp. 88–99, Springer, 2016.
    [29] T. Morris and W. Gao, “Industrial control system traffic data sets for intrusion detection research,” in International
    Conference on Critical Infrastructure Protection, pp. 65–78, Springer, 2014.
    [30] A. Lemay and J. M. Fernandez, “Providing SCADA network data sets for intrusion detection research,” in 9th Workshop
    on Cyber Security Experimentation and Test (CSET 16), (Austin, TX), USENIX Association, Aug. 2016.
    [31] N. Rodofile, T. Schmidt, S. Sherry, C. Djamaludin, K. Radke, and E. Foo, “Process control cyber­attacks and labelled
    datasets on s7comm critical infrastructure,” in Information Security and Privacy: 22nd Australasian Conference, ACISP
    2017, Proceedings, Part II (Lecture Notes in Computer Science, Volume 10343) (S. Suriadi and J. Pieprzyk, eds.), pp. 452–
    459, Switzerland: Springer, 2017.
    [32] C. Jin, N. Vyas, and R. Williams, “Fast low­space algorithms for subset sum,” in Proceedings of the 2021 ACM­SIAM
    Symposium on Discrete Algorithms (SODA), pp. 1757–1776, SIAM, 2021.

    QR CODE