簡易檢索 / 詳目顯示

研究生: 李原宏
Yuan-hung Lee
論文名稱: 整合於球面近場無反射實驗室之三維射頻辨識靜態驗測系統研發
A 3D RFID Static Test System Integrated in a Spherical Near-Field Chamber
指導教授: 楊成發
Chang-Fa Yang
口試委員: 郭斯彥
Sy-Yen Kuo
瞿大雄
Tah-Hsiung Chu
唐震寰
J.H. Tarng
周錫增
H.-T. Chou
陳俊良
Jiann-Liang Chen
馬自莊
Tzyh-Ghuang Ma
劉馨勤
Hsin-Chin Liu
廖文照
Wen-Jiao Liao
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 136
中文關鍵詞: 射頻辨識靜態測試無反射實驗室球面近場標籤讀取距離
外文關鍵詞: RFID, Static Test, Anechoic chamber, Spherical scanning, Readable range
相關次數: 點閱:208下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究三維射頻辨識靜態驗測系統,提出驗測系統的架構,運用Impinj讀取器,並且整合球面近場無反射實驗室,以開發三維之驗測系統,其中所開發的驗測系統可動態地調整不同的參數,提供不同的射頻辨識標籤種類、不同射頻辨識標籤讀取器及不同射頻辨識標籤排列方式之驗測結果。
    在實際環境應用的無線射頻系統,受限於真實環境中多重反射的無線射頻特性,射頻辨識標籤的表現容易被環境所影響,進而造成系統應用上或研發過程中發生問題時,問題主因判斷上的困難,因此,如何運用無反射實驗室來減少多重反射的問題,並控制量測的變因,是本論文研究的方向。
    所開發的靜態驗測系統可以針對射頻辨識標籤進行量測及分析,提供彈性的介面讓實驗室的操作人員可以任意修改量測的參數,定義了單一射頻辨識標籤及群組射頻辨識標籤的幾種量測方式,並說明系統開發所需的機制,包括最大讀取距離的計算、量測時間的考量以及量測最小功率的搜尋方法,而依系統所開發的功能,研究中提出了數個針對系統的驗證方式,除了利用空間的排列方式確認系統的結果,同時也使用了電磁模擬軟體對驗測系統進行模擬並與量測的結果比較之,最終在研究中設計了幾個量測的案例,分別展現單一射頻辨識標籤及群組射頻辨識標籤的特性,同時針對量測結果輔以電磁模擬軟體的分析比較,所得到的量測及模擬結果相當一致。
    一個良好的產品必須架構在良好的驗證系統上,不論在發現產品的問題與進一步改善問題或是射頻辨識標籤及讀取器的協同運作分析與優化,都需要一個穏定準確的驗測系統做為產品的標準,這是這個研究希望達成的目標。


    This thesis is to study the development methodology of 3D RFID static test system and to propose the architecture of the system, which is developed by using an Impinj reader and integrating with a spherical near-filed anechoic chamber. System parametric variables can be adjusted to obtain RFID performance for different types of RFID tags, readers and tag arrangements.
    In the realistic RFID operation environments, multipath effects often make RFID performance measurement inaccurate and to identify problem causes is not easy for RFID system applications and developments. In order to mitigate the impact from multipath, an attempt has been made to build a reliable 3D static test system such that RFID operation performance in three dimensions can be evaluated within a microwave anechoic chamber environment for antenna testing to reduce various interferences from different environments and possibly to obtain parameterized results of RFID performance due to controllable impacting factors in different operation environments. To get parameterized results of RFID performance under controllable impacting factors from environment is the focus in this dissertation.
    The 3D RFID static test system can be applied to perform tag measurements and analysis. Various adjustable measurement parameters on system GUI (Graphic User Interface) are provided. This dissertation studies the measurement methodology to characterize a single tag or group of tags and proposes the required mechanisms for the 3D RFID static test system, including the tag readable range determination, measurement period optimization and minimum power search algorithm. Various testing scenarios with different tag arrangements for validating the measurement system features are proposed and performed. Simulations with an electromagnetic solver have also been performed on those testing scenarios to evaluate the 3D readable ranges of a single tag or group of tags. Good agreements between measured and simulated results have been obtained.
    A successful RFID product development requires a stable and accurate RFID static test system for conformance test to resolve RFID product design issues or to optimize interoperate operations between tags and readers. The 3D RFID static test system proposed in this dissertation is developed to support those requirements.

    摘要 III Abstract V 誌謝 VII 目錄 IX 圖索引 XIII 表索引 XVII 第一章 緒論 2 1.1 研究背景 2 1.2 研究目的 4 1.3 章節概述 5 第二章 系統架構 8 2.1 前言 8 2.2 系統架構 8 2.2.1 三維量測架構 8 2.2.2 三維射頻辨識靜態驗測系統架構 12 2.2.3 應用商用射頻辨識讀取器的三維量測架構 15 第三章 射頻辨識靜態驗測系統設計 18 3.1 前言 18 3.2 硬體架構 19 3.2.1 球面近場實驗室 19 3.2.2 量測硬體架構 22 3.3 軟體架構 26 3.3.1 架構說明 27 3.3.2 功能說明 30 3.4 軟體設計 33 3.4.1 低階讀取器協定(LLRP) 33 3.4.2 球面近場實驗室之控制 42 3.4.3 量測參數 46 3.4.4 量測時間 49 3.4.5 群組射頻辨識標籤之量測 51 3.4.6 射頻辨識標籤之最大讀取距離 52 3.4.7距離的校正 62 3.4.8最小啓動功率之搜尋方法 69 3.5 軟體介面及系統執行程序 73 第四章 量測與驗證 84 4.1 前言 84 4.2 驗證群組射頻辨識標籤之量測 84 4.3 HFSS軟體模擬 89 4.3.1 射頻辨識標籤模型 89 4.3.2 HFSS模擬參數及模型 92 4.3.3 射頻辨識標籤間之干擾量測與模擬 95 第五章 應用與討論 100 5.1 前言 100 5.2 傳輸功率與射頻辨識標籤讀取率 100 5.3 射頻辨識標籤讀取範圍 102 5.4 單一射頻辨識標籤的特性量測 103 5.5 群組射頻辨識標籤的特性量測 106 5.6 群組射頻辨識標籤的特性量測及模擬 110 5.6.1 射頻辨識標籤在XBOX的量測及模擬 110 5.6.2 射頻辨識標籤在New iPad的量測及模擬 115 5.6.3 射頻辨識標籤在XBOX及New iPAD的量測及模擬 119 第六章 未來研究方向及結論 126 6.1 未來研究方向 126 6.2 結論 129 參考文獻 131 作者簡歷 134

    [1] J. Landt, “The History of RFID,” IEEE Potentials, vol. 24, no. 4, Oct.-Nov. 2005, pp. 8-11
    [2] http://www.gs1.org/epcglobal
    [3] http://www.fetc.net.tw
    [4] 3GPP TR 23.888 V2.0.0 System Improvements for Machine-Type Communications (Release 11), 3GPP, Aug. 2012
    [5] Low Level Reader Protocol (LLRP) version 1.1, EPCglobal, 2010.
    [6] Kraus, S, Hartmann, M, Grabowski, C, Bernhard, J, “Read range measurements of UHF RFID transponders in mobile anechoic chamber,”, IEEE International Conference on RFID, 27-28 Apr. 2009, pp. 110-113
    [7] High Frequency Structure Simulator (HFSS) v9.1, Ansoft Corporation
    [8] Test Plan for Mobile Station Over the Air Performance, CTIA, 2011
    [9] Static Test Method For Applied Tag Performance Testing, EPCglobal, May 2008.
    [10] The EPCglobal Architecture Framework, EPCglobal, 2009.
    [11] NSI 2000 Script Manual, NSI, 2003
    [12] http://www.impinj.com
    [13] G. Fritz, V. Beroulle, M.D. Nguyen, O. Aktouf, I. Parissis, “Read-Error-Rate evaluation for RFID system on-line testing,” IEEE 16th International Mixed-Signals, Sensors and Systems Test Workshop (IMS3TW), pp. 1-6, Jun. 2010
    [14] N. Ahmed, R. Kumar, R. S. French, and U. Ramachandaran, “RF2ID: A Reliable Middleware Framework for RFID Deployment,” in proc. IEEE International Parallel and Distributed Processing Symposium (IPOPS), 2007.
    [15] Daniel M. Dobkin, The RF in RFID, Newnes, 2008
    [16] P.V. Nikitin, K.V.S. Rao, S.F. Lam, V. Pillai, R. Martinez, and H. Heinrich, “Power reflection coefficient analysis for complex impedances in RFID tag design,” IEEE Trans. on Microwave Theory and Techniques, pp. 2721- 2725, Jan. 2005.
    [17] Regulatory status for using RFID in the UHF spectrum, GS1, 25 Nov. 2011
    [18] Octane 3.2 User Guide, Impinj, 2009
    [19] ALN-9540 Squiggle® Inlay product overview, Alien Technology, 2007
    [20] http://usa.autodesk.com/
    [21] Medeiros, C. R., Costa, J. R, and Fernandes, C. A., “Passive UHF RFID Tag for Airport Suitcase Tracking and Identification” , IEEE Antennas and Wireless Propagation Letters, Vol. 10 pp.123 - 126, Mar. 2011
    [22] G. Marrocco, “RFID Grids - Part I: Electromagnetic Theory,” IEEE Trans. on Antennas Propagation, pp. 1019 – 1026, Mar. 2011
    [23] EPC™ Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz – 960 MHz Version 1.0.9, EPCglobal, Jan. 2005.

    無法下載圖示 全文公開日期 2018/01/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE