簡易檢索 / 詳目顯示

研究生: 歐健育
Jian-yu Ou
論文名稱: 熱感知實體數位系統之服務品質最佳化
QoS optimization for thermal-aware cyber‐physical systems
指導教授: 陳雅淑
Ya-Shu Chen
口試委員: 張立平
Li-Pin Chang
吳晉賢
Chin-Hsien Wu
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 35
中文關鍵詞: 實體數位系統服務品質管理熱感知動態規劃
外文關鍵詞: cyber-physical system, quality of service management, thermal-aware, dynamic programming
相關次數: 點閱:416下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以服務品質為基礎的機制管理實體數位系統,系統的執行深受外在的非預期要素影響,因此正確的管理系統是一個困難且具有挑戰性的問題。本論文提出針對實體數位系統為導向的服務品質最佳化演算法,可調整各個行程速度品質,使系統不會超過熱的限制。此演算法顯著的特色在於使用動態規劃的機制去契合服務品質的管理,以提供不同層次的速度品質給不同型態的行程執行,因此有能力去平均分配處理器的利用率,並且高度的保證行程的可行性與發揮系統最大價值的效能。本論文的演算法優點已經透過大規模的系統模擬和非預期性的干擾下進行驗證,並且可以依照不同的系統,選擇最合適的服務品質導向。


    The management of Quality of Service (QoS) in cyber-physical systems is a challenging problem due to dynamics of physical components. In this paper, we propose a QoS optimization algorithm cooperating with a feedback control framework, which provides configurability between high system profit and low computational overhead. The proposed algorithm maximizes the system value under the thermal constraint, guarantees task feasibility, and can be extended to any feedback controller. We present a real case study to demonstrate the practicability of the proposed methodology, and perform an extensive series of simulations for comparison using different workloads and management algorithms.

    Chapter 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2. System Model and Problem Definition . . . . . . . . . . . . . . 4 2.1 Task model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Problem definition. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 3. Thermal-aware QoS Optimization . . . . . . . . . . . . . . . . . 8 3.1 Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 QoS Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Chapter 4. Performance Evaluation. . . . . . . . . . . . . . . . . . . . . 15 4.1 Data Sets and Performance Metrics. . . . . . . . . . . . . . . . . . . 15 4.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2.1 Varying Power Ratios . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2.2 Varying Initial Temperature . . . . . . . . . . . . . . . . . . . . .22 4.2.3 Varying Numbers of QoS Levels. . . . . . . . . . . . . . . . . . . . 25 4.2.4 Real-life application. . . . . . . . . . . . . . . . . . . . . . . . 27 Chapter 5. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    [1] W.Wolf, “Cyber-physical systems,” IEEE Transactions on Computers, pp. 88 –89, March 2009.
    [2] E. A. Lee, “Computing foundations and practice for cyber-physical systems: a preliminary report,” Electrical Engineering and Computer Sciences University of California at Berkeley, http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-72.html, Tech. Rep., May 2007.
    [3] J. Sztipanovits, “Composition of cyber-physical systems,” in ECBS and Annual IEEE International Conference and Workshops on the Engineering of Computer-Based Systems, March 2007, pp. 3 –6.
    [4] S. Lim, L. Chung, O. Han, and J.-H. Kim, “An interactive cyber-physical system (cps) for people with disability and frail elderly people,” in Proceedings of the 5th International Conference on Ubiquitous Information Management and Communication, 2011, pp. 113:1–113:8.
    [5] J. White, C. Thompson, H. Turner, B. Dougherty, and D. Schmidt, “Wreckwatch: Automatic traffic accident detection and notification with smartphones,” Mobile Networks and Applications, pp. 285–303, 2011.
    [6] L. Malrait, “QoS-oriented control of server systems,” SIGOPS Oper. Syst. Rev., August 2010.
    [7] A. Gounaris, C. Yfoulis, R. Sakellariou, and M. Dikaiakos, “Robust runtime optimization of data transfer in queries over web services,” in ICDE and IEEE International Conference on Data Engineering, april 2008, pp. 596 –605.
    [8] H. J. Kim, J. C. Shim, H.-S. Kim, K. S. Cho, and S. G. Choi, “An active queue management for QoS guarantee of the high priority service class,” in Communication and Networking, 2010, pp. 37–45.
    [9] G. Grimm, M. Messina, S. Tuna, and A. Teel, “Nominally robust model predictive control with state constraints,” IEEE Transactions on Automatic Control, oct. 2007.
    [10] C. Løvaas, M. M. Seron, and G. C. Goodwin, “Robust output-feedback model predictive control for systems with unstructured uncertainty,” Automatica, August 2008.
    [11] M. Lazar, D. M. de la Pena, W. P. M. H. Heemels, and T. Alamo, “On input-to-state stability of min-max nonlinear model predictive control,” Systems and Control Letters, 2008.
    [12] I. Yeo, C. C. Liu, and E. J. Kim, “Predictive dynamic thermal management for multicore systems,” in Proceedings of the 45th annual Design Automation Conference, 2008, pp. 734–739.
    [13] O. Khan and S. Kundu, “A framework for predictive dynamic temperature management of microprocessor systems,” in Proceedings of the 2008 IEEE/ACM International Conference on Computer-Aided Design, 2008, pp. 258–263.
    [14] R. Cochran and S. Reda, “Consistent runtime thermal prediction and control through workload phase detection,” in Proceedings of the 47th Design Automation Conference, 2010, pp. 62–67.
    [15] Y. Fu, N. Kottenstette, Y. Chen, C. Lu, X. Koutsoukos, and H. Wang, “Feedback thermal control for real-time systems,” in IEEE on Real-time and embedded technology and applications symposium (RTAS), April 2010, pp. 111 –120.
    [16] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao, “Feedback control real-time scheduling: framework, modeling, and algorithms,” Real-Time Systems, 2002.
    [17] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D. Tarjan, “Temperature-aware microarchitecture: Modeling and implementation,” ACM Transactions on Archit. and Code Optim., March 2004.
    [18] A. Ferreira, D. Mosse, and J. Oh, “Thermal faults modeling using a RC model with an application to web farms,” in Euromicro Conference on Real-Time Systems (ECRTS), July 2007, pp. 113 –124.
    [19] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard real-time environment,” JACM, vol. 20, no. 1, 1973.
    [20] T. Wescott, “PID without a PHD on FLIR systems,” http://igor.chudov.com/manuals/Servo-Tuning/PID-without-a-PhD.pdf, Tech. Rep.,
    October 2000.
    [21] “Pid design and tuning,” http://www.pidlab.com/en/pid-design-and-tuning, Tech. Rep., Jul. 2009.
    [22] D. Pisinger, “A minimal algorithm for the multiple-choice knapsack problem,” European Journal of Operational Research, 1994.
    [23] “Hotspot,” Univ. of Virginia Fund for Excellence in Science and Engineering, http://lava.cs.virginia.edu/HotSpot/, Tech. Rep., 2010.
    [24] I. Corp., “Intel pentium 4 processor in the 423-pin package thermal design guidelines,” Intel, Tech. Rep., http://download.intel.com/design/Pentium4/guides/24920301.pdf, Tech. Rep., 2000.
    [25] T. I. Corp., “Msp430f1611 data sheet guidelines,” Texas Instruments, Tech. Rep.,http://focus.ti.com/lit/ds/symlink/msp430f1611.pdf, Tech. Rep., 2011.
    [26] P. Suriyachai, U. Roedig, and A. Scott, “Implementation of a MAC protocol for QoS support in wireless sensor networks,” in PerCom and IEEE International Conference on Pervasive Computing and Communications, march 2009, pp. 1 –6.
    [27] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time dynamic linking for reprogramming wireless sensor networks,” in Proceedings of the 4th international conference on Embedded networked sensor systems, 2006, pp. 15–28.
    [28] S. Hong and K. Sun-Joong, “Task modeling for energy efficiency and real time scheduling in sensor networks,” in International Joint Conference on SICE-ICASE, Oct. 2006, pp. 4341 –4344.

    QR CODE