簡易檢索 / 詳目顯示

研究生: 賴昱維
Yu-Wei Lai
論文名稱: 四自由度共面偵測分束器式光柵干涉儀之開發
Development of a Four-degree-of-freedom Grating Interferometer Based on Coplanar Detection Design
指導教授: 謝宏麟
Hung-Lin Hsieh
口試委員: 李朱育
Ju-Yi Lee
鄧昭瑞
Geo-Ry Tang
陳品銓
Pin-Chuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 123
中文關鍵詞: 外差干涉術光柵干涉術雙繞射共面偵測四自由度
外文關鍵詞: Heterodyne interferometry, Grating interferometry, Double-diffraction, Co-planar detection, Four-DOF (Degree-of-Freedom)
相關次數: 點閱:271下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一套共面偵測分束器式光柵干涉儀,此套干涉儀採用「雙繞射式」的光路設計進行系統開發,透過光柵與反射鏡的搭配使通過光柵後的繞射光束再次穿過光柵形成二次繞射,用以引進加倍的的相位變化量,可有效提升干涉儀的量測靈敏度。此外,亦透過「Littrow光路」的設計概念,使繞射光束得以沿原路徑返回,使干涉儀能於單一偵測架構下提供面內位移及面外位移之量測訊息,同時亦藉由側向分束器(Lateral Displacement Non-Polarized Beamsplitter, LBS)的使用,在共用光學元件的情況下形成第二個偵測架構,而後可針對同一個待測光柵表面進行量測,用以形成「共面偵測光路」,每組偵測架構皆具備面內位移及面外位移的量測能力,藉由比對兩組偵測架構的量測結果即可回推出光柵於x軸及z軸的旋轉角度變化量。
    由實驗結果證明,此套共面偵測分束器式光柵干涉儀可在不改變光學架構下,提供四自由度位移及旋轉角度的量測資訊,其面內、面外位移(x軸向及z軸向)及旋轉角(θx軸向及θz軸向)之解析度分別可達0.7 nm、1.2 nm及40.8 nrad、50.5 nrad;重複性分別優於0.6 nm、0.8 nm、8.3 nrad及10.2 nrad;穩定度於開放式環境歷時10分鐘的條件下分別優於8 nm、14 nm及100 nrad、200 nrad。由上述實驗結果驗證此套共面偵測分束器式光柵干涉儀具備優異的量測性能,日後可廣泛應用於各式需進行多自由度位移及角度量測等場合中。


    In this study, a four-degree-of-freedom grating interferometer based on coplanar detection design is proposed. The proposed interferometer is adopted “double-diffraction” as the core technique. Through the combination of grating and mirrors, the diffraction beams are passed through the grating again to form the second diffraction, which can induce the double phase variation and can improve the sensitivity of the system effectively. In addition, through the design concept of “Littrow optical path”, the diffraction beams can return along the original path so that the proposed interferometer can provide the measurement information of in-plane and out-of-plane displacement under a single detection configuration. Also, by the use of a lateral displacement non-polarized beamsplitter (LBS), the second detection configuration is formed and the measurement can be obtained to form “coplanar detection optical path”. Therefore, each detection configuration has capabilities of measuring in-plane and out-of-plane displacement. By comparing the measurement of the two detection configurations, the measurements of θx-axis and θz-axis can be obtained.
    The experimental results show that the four-degree-of-freedom grating interferometer can provide the measurement information of four-degree-of-freedom displacement and rotation angle without changing the optical configuration. The resolutions for displacement (x-axis and z-axis) and rotation angle (θx-axis and θz-axis) are approximately 0.7 nm, 1.2 nm, 40.8 nrad and 50.5 nrad, the repeatabilities are better than 0.6 nm, 0.8 nm, 8.3 nrad and 10.2 nrad, the stabilities are better than 8 nm, 14 nm, 100 nrad and 100 nrad in ten minutes. The superior performance demonstrates that the proposed interferometer can be widely used for various precision measurement systems.

    摘要 I Abstract II 致謝 III 符號說明 IV 目錄 IX 圖目錄 XIII 表目錄 XVI 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.2.1 同調式雷射干涉儀(術)之文獻回顧 3 1.2.2 同調式光柵干涉儀(術)之文獻回顧 7 1.2.3 外差式雷射干涉儀(術)之文獻回顧 11 1.2.4 外差式光柵干涉儀(術)之文獻回顧 14 1.2.5 雙(多)繞射光柵干涉儀之文獻回顧 19 1.3 研究目的 22 1.4 論文架構 23 第二章 基礎理論 25 2.1 同調干涉技術 25 2.2 外差干涉技術 26 2.2.1 旋轉波片法 28 2.2.2 賽曼雷射(Zeeman Laser) 29 2.2.3 聲光調制技術 31 2.2.4 電光調制技術 33 2.2.5 雷射二極體波長調制技術 35 2.2.6 Wollaston Prism弦波調制技術 37 2.3 光柵干涉技術(雷射光學尺) 39 2.3.1 都卜勒移頻效應 39 2.3.2 雙繞射光路架構 41 2.3.3 外差式光柵干涉技術 43 第三章 共面偵測分束器式光柵干涉儀之開發 46 3.1 Beam Displacer特性及原理 46 3.2 雙自由度共面偵測分束器式光柵干涉儀之設計原理 48 3.3 四自由度共面偵測分束器式光柵干涉儀之設計原理 52 3.4 3D列印光機模組 57 3.5 鎖相放大程式及相位解調系統 58 3.6 小結 60 第四章 實驗結果與討論 61 4.1 雙自由度位移(x, z)量測實驗 61 4.2 四自由度位移(x, z, θx, θz)量測實驗 64 4.2.1 四自由度位移(x, z)量測實驗 64 4.2.2 旋轉角(θx, θz)量測實驗 67 4.3 量測系統多項性能測試與討論 70 4.3.1 解析度量測實驗 70 4.3.2 重複性量測實驗 74 4.3.3 穩定度量測實驗 75 4.3.4 隨機波量測實驗 77 4.3.5 長行程量測實驗 78 4.3.6 直線度誤差量測實驗 79 4.3.7 量測速度極限實驗 81 4.4 實驗儀器及光學元件 83 第五章 誤差分析 85 5.1 系統誤差 85 5.1.1 光源方位角偏差所造成之影響 85 5.1.2 電光調制器之對位誤差所造成之影響 89 5.1.3 偏振元件消光比所造成之影響 90 5.1.4 光柵對位誤差於位移量測系統中造成之影響 92 5.1.5 四分之一波片(QWP)方位角偏差所造成之影響 95 5.2 隨機誤差 97 5.2.1 外界環境振動 97 5.2.2 材料熱膨脹係數造成的影響 97 5.2.3 電子雜訊 98 5.3 小結 98 第六章 結論與討論 100 6.1 結論 100 6.2 未來展望 102 參考文獻 103

    [1] A. A. Michelson, “The relative motion of the Earth and the Luminiferous ether,” Am. J. Sci. 22(128), 120 (1881).
    [2] M. Pisani, “A homodyne Michelson interferometer with sub-picometer resolution,” Meas. Sci. Technol. 20(8), 084008 (2009).
    [3] J. Ahn, J. A. Kim, C. S. Kang, J. W. Kim and S. Kim, “A passive method to compensate nonlinearity in a homodyne interferometer,” Opt. Express 17(25), 23299-23308 (2009).
    [4] J. Cui, Z. He, Y. Jiu, J. Tan and T. Sun, “Homodyne laser interferometer involving minimal quadrature phase error to obtain subnanometer nonlinearity,” Appl. Opt. 55(25), 7086-7092 (2016).
    [5] Y. Lou, L. Yan, B. Chen and S. Zhang, “Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology,” Opt. Express 25(6), 6805-6821 (2017).
    [6] E. Higurashi and R. Sawada, “High-accuracy micro-encoder based on the higher-order diffracted light interference,” IEEE Xplore 143-144 (2000).
    [7] S. J. Friedman, B. Barwick, and H. Batelaan, “Focused-laser interferometric position sensor,” Rev. Sci. Instrum., 76(12), 123106 (2005).
    [8] C. K. Lee, C. C. Wu, S. J. Chen, L. B. Yu, Y. C. Chang, Y. F. Wang, J. Y. Chen and W. J. Wu, “Design and construction of linear laser encoders that possess high tolerance of mechanical runout,” Appl. Opt. 43, 5754-5762 (2004).
    [9] K. M. H. Goudarzi, and J. Y. Jeng, “High-precision miniaturized low-cost reflective grating laser encoder with nanometric accuracy,” Appl. Opt. 59, 5764-5771 (2020).
    [10] D. C. Su, M. H. Chiu and C. D. Chen, “Simple two-frequency laser,” Precis. Eng. 18(2-3), 161-163 (1996).
    [11] D. C. Su, M. H. Chiu and C. D. Chen, “A heterodyne interferometer using an electro-optic modulator for measuring small displacements,” J. Opt. 27(1), 19-23 (1996).
    [12] J. Qi, Z. Wang, J. Huang and J. Gao, “Resolution-enhanced heterodyne laser interferometer with differential configuration for roll angle measurement,” Opt. Express 26(8), 9634-9644 (2018).
    [13] X. Wang, J. Su, J. Yang, L. Miao and T. Huang, “Modified homodyne laser interferometer based on phase modulation for simultaneously measuring displacement and angle,” Appl. Opt. 60(16), 4647-4653 (2021).
    [14] J. Y. Lee and M. P. Lu, “Optical heterodyne grating shearing interferometry for long-range positioning applications,” Opt. Commun. 284(3), 857-862 (2011).
    [15] S. Yan, G. Wang, C. Lin, and Y. Luo, “Displacement measurement by Single-grating heterodyne Interferometry,” Conf. Lasers Electro-Opt. Pac. Rim (2015).
    [16] X. Xing, D. Chang, P. Hu, and J. Tan, “Spatially separated heterodyne grating interferometer for eliminating periodic nonlinear errors,” Opt. Express, 25, 31384-31393 (2017).
    [17] Q. Lv, Z. Liu, W. Wang, X. Li, S. Li, Y. Song, W. Li, “Simple and compact grating-based heterodyne interferometer with the Littrow configuration for high-accuracy and long-range measurement of two-dimensional displacement,” Appl. Opt. 57(31), 9455-9463 (2018).
    [18] 廖家賢,「六自由度聚焦式雷射光學尺」,碩士學位論文,國立台灣科技大學,2018。
    [19] F. Cheng and K. C. Fan, “Linear diffraction grating interferometer with high alignment tolerance and high accuracy,” Appl. Opt. 50(22), 4550-4556 (2011).
    [20] J. Y. Lee and G. A. Jiang, “Displacement measurement using a wavelength-phase-shifting grating interferometer,” Opt. Express 21(21), 25553-25564 (2013).
    [21] J. Deng, X. Yan, C. Wei, Y. Lu, M. Li, X. Xiang and C. Zhou, “Eightfold optical encoder with high-density grating,” Appl. Opt. 57(10), 2366-2375 (2018).
    [22] R. N. Shagam and J. C. Wyant, “Optical frequency shifter for heterodyne interferometers using multiple rotating polarization retarders,” Appl. Opt. 17(19), 3034-3035 (1978).
    [23] A. Weis and S. Derler, “Doppler modulation and Zeeman modulation: laser frequency stabilization without direct frequency modulation,” Appl. Opt., 27(13), 2662-2665 (1988).
    [24] E. A. Donley, T. P. Heavner, F. Levi, M. Tataw and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76(6), 063112 (2005).
    [25] C. Bosshard, K. Sutter, R. Schlesser, and P. Guenter., “Electro-optic effects in organic single crystals,” SPIE (1993).
    [26] 鐘於哲,「新型波長調制外差光源應用於位移量測」,碩士學位論文,國立中央大學,2011。
    [27] 賴宗德,「弦波調制雙繞射光柵干涉儀用於位移及角度量測之開發」,碩士學位論文,國立台灣科技大學,2019。
    [28] J. Y. Lee, H. Y. Chen, C. C. Hsu and C. C. Wu, “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution,” Sens. Actuator A Phys. 137(1), 185-191 (2007).
    [29] H. L. Hsieh and S.W. Pan, “Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements,” Opt. Express 23, 2451–2465 (2015).
    [30] W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knappf, A. Weckenmanng, W. T. Estlerh and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann Manuf. Techn., 64, 773–796 (2015).
    [31] J. Y.Lee, C. T. Hung, “Wavelength-modulated standing-wave interferometry for small out-of-plane displacement measurement,” Opt. Laser Techn. 124, 105967 (2020).
    [32] J. Williamson, H. Martin and X. Jiang, “High resolution position measurement from dispersed reference interferometry using template matching,” Opt. Express 24, 10103–10114 (2016).
    [33] A. J. Fleming, “A review of nanometer resolution position sensors: Operation and performance,” Sens. Actuators A Phys. 190, 106–126 (2013).
    [34] Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt., 54, 4188–4196 (2015).
    [35] N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Techn., 4, 907 (1993).
    [36] J. Y. Lee and M. P. Lu, “Optical heterodyne grating shearing interferometry for long-range positioning applications,” Opt. Commun. 284(3), 857–862 (2011).
    [37] L. Chassagne, M. Wakim, S. Xu, S. Topcu, P. Ruaux, P. Juncar, Y. Alayli, “A 2D nano-positioning system with sub-nanometric repeatability over the millimetre displacement range, ” Meas. Sci. Technol., 18(11), (2007).
    [38] J. Y. Lee and H. L. Hsieh, G. Lerondel, R. Deturche, M. P. Lu and J. C. Chen, “Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement,” Appl. Opt. 50, 1272–1279 (2011).
    [39] J. Y.Lee, Y. X. Wang, Z. Y. Lin, C. R. Lin and C. H. Chan, “Standing-wave interferometer based on single-layer SiO2 nano-sphere scattering,” Opt. Express, 25, 26628–26637 (2017).

    無法下載圖示 全文公開日期 2026/09/16 (校內網路)
    全文公開日期 2027/09/16 (校外網路)
    全文公開日期 2027/09/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE