簡易檢索 / 詳目顯示

研究生: 汪育正
Yu-Cheng Wang
論文名稱: 外差式共光程折射率量測技術之開發
Development of heterodyne common-optical-path refractive index measurement technique
指導教授: 謝宏麟
Hung-Lin Hsieh
口試委員: 修芳仲
none
李朱育
none
許正治
none
陳品銓
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 86
中文關鍵詞: 外差干涉術共光程折射率量測
外文關鍵詞: heterodyne, common-optical-path, refractive index measurement
相關次數: 點閱:165下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一套創新的「外差式共光程折射率量測技術」,用以量測透明固體及液體折射率及其折射率變化。此套量測技術採「共光程光路」為設計概念,使參考光與量測光於空間中的行進路徑幾乎相同,可有效降低環境對量測結果所造成的影響,同時透過外差干涉術的使用,使此套「外差式共光程折射率量測技術」具備高穩定性及高解析度。
    此套「外差式共光程折射率量測技術」由外差光源、擴束系統、特製半圓形半波片、透明壓克力盒、旋轉平台、全像光柵和相位解調系統所組成。藉由電光調制技術來產生外差光源,而後使外差光源經共光程光路後形成參考光及量測光,其中量測光將穿過放置於壓克力盒內之待測物,利用聚焦透鏡將量測光及參考光聚焦於光柵上,使繞射之量測光及參考光部分區域相疊合後形成干涉條紋。當待測物之折射率改變時,量測光所行經之光程將隨之發生變化,藉由計算干涉訊號之相位變化量,即可回推待測物之折射率變化量。此外,當待測物於空間中產生旋轉角變化時,亦會改變量測光所行經之路徑,使得干涉訊號產生相位變化,透過計算其相位變化量,即可回推待測物之絕對折射率。
    為了驗證此套「外差式共光程折射率量測技術」的可行性及其性能,我們依序進行絕對折射率、折射率變化及濃度變化等量測實驗,並將量測結果與參考文獻進行比對。由實驗結果證明,此套「外差式共光程折射率量測技術」具備高解析度(3.4×10-7 RIU)、高靈敏度(2.6×106 /RIU),及高穩定度(1.3×10-7 RIU/min)的量測能力,可廣泛應用於需高精密折射率量測的場合中。


    An innovative heterodyne common-optical-path (COP) refractive index (RI) measurement technique for measuring RI of transparent or semi-transparent solid or liquid sample is proposed in this study. The design concept of the proposed measurement technique is based on the COP configuration. According to the measurement principle of COP configuration, the effects resulting from experimental disturbances can be effectively decreased due to the moving paths of the reference and the measurement beams are almost the same. Moreover, by using the technique of heterodyne interferometry, the proposed heterodyne COPRI measurement technique has the ability of high stability and high resolution.
    The proposed heterodyne COPRI measurement technique is composed of a heterodyne light source, beam-expander, specific semi-circle half-wave-plate, rotation stage, holographic grating, and phase demodulation system. A heterodyne light source is generated by using the electro-optics modulating technique. The reference and measurement beams are formed as the heterodyne passes through the COP configuration. The beam passes through the sample which placed in a PMMA box is regarded as measurement beam. By using a suitable focusing lens, the reference and measurement beams are focused on the grating and then diffracted. Interference patterns can be formed since the diffracted beams of reference and measurement beams are overlapped partially. The optical path of measurement beam will vary as the RI of sample changes. Therefore, the value of RI variation can be obtained by calculating the phase variation of the interference signal. Furthermore, the optical path of measurement beam will be changed as the sample is rotated by a rotation stage. When this situation occurs the phase of interference signal will be changed. In this case, the RI value of sample can be acquired by calculating the phase variation of the interference signal.
    In order to demonstrate the facility and performance of our proposed heterodyne COPRI measurement technique, the experiments of absolute RI, RI variation and consistency variation are successively performed and compared with the values revealed in references. As can be proved from the experimental results, the proposed heterodyne COPRI measurement technique, has the ability of high resolution (3.4×10-7 RIU), high sensitivity (2.6×106 /RIU), and high stability (1.3×10-7 RIU/min), can be widely applied in the fields that required high precise refraction index measurement.

    摘要 IV Abstract V 目錄 VIII 圖目錄 X 表目錄 XII 符號說明 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 折射率量測文獻回顧 2 1.2.1臨界角法折射率量測文獻回顧 3 1.2.2阿貝折光儀量測文獻回顧 4 1.2.4表面電漿共振法 7 1.2.5 外差全反射式干涉儀 8 1.2.6 Michelson Type 及 Mach-zehnder Type干涉儀 9 1.2.7 Mach-Zehnder Type干涉儀-相對式偵測原理 11 1.2.8低同調干涉儀量測架構 12 1.3 研究目的 15 1.4論文架構 15 第二章 基礎理論 17 2.1外差干涉術 17 2.1.1旋轉光柵產生外差光源 18 2.1.2旋轉波片法調制外差光源 20 2.1.3賽曼雷射 21 2.1.4聲光調變器調制外差光源 21 2.1.5電光調變器調制外差光源 22 2.2外差麥克森干涉儀 23 2.2.1外差麥克森干涉儀之位移量測 23 2.2.2外差麥克森干涉儀用之折射率變化量測 25 2.2.3麥克森干涉儀旋轉式絕對折射率量測法 26 2.3 Mach–Zehnder干涉儀折射率量測 27 2.4準共光程外差光柵干涉儀 29 2.5外差訊號相位解調 31 2.6小結 32 第三章 外差式共光程折射率量測技術之系統架構及原理 34 3.1外差式共光程折射率變化量測技術系統架構 34 3.2外差式共光程絕對折射率量測技術系統架構 36 3.3入射光之入射角度較正 42 3.3共光程光柵式折射率量測實驗元件介紹 42 3.4相位解調及折射率計算程式 45 3.5小結 46 第四章 實驗結果與討論 48 4.1折射率變化量測實驗 48 4.1.1水折射率變化量測實驗架構 48 4.1.2水折射率變化量測實驗結果 49 4.2水之絕對折射率量測實驗 50 4.2.1水之絕對折射率量測實驗所量測出路徑差 51 4.2.2水之絕對折射率量測實驗結果 53 4.3不同濃度食鹽水量測實驗 55 4.3.1不同濃度食鹽水量測實驗-食鹽水調配 55 4.3.2不同濃度食鹽水量測實驗-實驗結果 56 4.4固體之絕對折射率量測實驗 56 4.5穩定度量測 57 第五章 誤差分析 59 5.1光學量測系統誤差 59 5.1.1半波片對光程差量測所引入之非線性誤差 59 5.1.2光柵週期誤差對量測系統所引入之非線性誤差 61 5.2絕對折射率量測系統因量測架構所引入之量測誤差 61 5.2.1旋轉平台旋轉對系統量測系統所引入之誤差 62 5.2.2待測物厚度精度對系統量測系統所引入之誤差 63 5.2.3光程差量測對系統量測系統所引入之誤差 64 5.3光彈效應對量測結果之影響 65 第六章 結論與未來展望 66 6.1結論 66 6.2未來展望 67

    [1] Y. H. Zhou et al., “Cladless few mode fiber grating sensor for simultaneous refractive index and temperature measurement,” Sensors and Actuators A: Physical, 228, pp.62-68, 2015.
    [2] W. Tao et al., “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Optics Express, 16, pp.5764-5769, 2008.
    [3] B. Šantić et al., “Measurement of the refractive index and thickness of a transparent film from the shift of the interference pattern due to the sample rotation,” Thin Solid Films, 518, pp.3619-3624, 2010.
    [4] P. Jungjae et al., “Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser,” Optics Communications, 305, pp.170-174, 2013.
    [5] G. M. W. Kroesen et al., “Measurement of the complex refractive index of liquids in the infrared using spectroscopic attenuated total reflection ellipsometry: correction for depolarization by scattering,” Applied Optics, 34, pp.5708-5714, 1995.
    [6] G. Augusto et al., “Dynamic reflectometry near the critical angle for high-resolution sensing of the index of refraction,” Sensors and Actuators B: Chemical, 52, pp.236-242, 1998.
    [7] H. W. Wiley, “Bulletin - Bureau of Chemistry,” U.S. Bureau of Chemistry, pp.131,1908.
    [8] H. Contreras-Tello et al., “Understanding the performance of Abbe-type refractometers with optically absorbing fluids,” Measurement Science and Technology, 25, pp.7, 2014.
    [9] J. Y. Lee and S. K. Tsai, “Measurement of refractive index variation of liquids by surface plasmon resonance and wavelength-modulated heterodyne interferometry,” Optics Communications, 284, pp.925-929, 2011.
    [10] K. M. Hansson et al., “Surface plasmon resonance (SPR) analysis of coagulation in whole blood with application in prothrombin time assay,” Biosensors and Bioelectronics, 14, pp.671-682, 1999.
    [11] 曾恆正,「共光程全反射外差干涉術之研究與應用」,國立中央大學,碩士論文,2006。
    [12] A. Ilsin, “Application of Imaging Ellipsometry to the Detection of Latent Fingermarks,” Forensic Science International, 253, pp.28-32, 2015.
    [13] D. Boer et al., “Measurement of the complex refractive index of liquids in the infrared using spectroscopic attenuated total reflection ellipsometry: correction for depolarization by scattering,” Applied Optics, 34, 5708-5714, 1995
    [14] C. C. Hsu et al., “Measuring the refractive index of transparent materials using high precision circular heterodyne interferometry,” Optics and Lasers in Engineering, 50, pp.1689-1693, 2012.
    [15] C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser-based interferometric techniques,” Optics and lasers in Engineering, 31, pp.455-491, 1999.
    [16] T. Zhang et al., “A single-element interferometer for measuring refractive index of transparent liquids,” Optics Communications, 332, pp14-17, 2014.
    [17] B. Richerzhagen, “Interferometer for measuring the absolute refractive index of liquid water as a function of temperature at 1.064 μm,” Applied Optics, 35, pp1650-1653, 1996.
    [18] S. R. Kachiraju and D. A. Gregory, “Determining the refractive index of liquids using a modified Michelson interferometer,” Optics and Laser Technology, 44, pp.2361-2365, 2012.
    [19] A. Suhadolnik, “An optical fibre interferometric refractometer,” Measurement Science and Technology, 18, pp1205, 2007.
    [20] R. G. Heideman et al., “Simple interferometer for evanescent field refractive index sensing as a feasibility study for an immunosensor,” Applied Optics, 30, pp.1474-1479, 1991.
    [21] M. A. Rahman and M. Z. Saghir, “Error scrutiny of measuring coefficients of refractive indices and Soret coefficients using Mach–Zehnder interferometer,” Light and Electron Optics, 125, pp.4609-4613, 2014.
    [22] S. D. Nicola et al., “A Mach–Zehnder interferometric system for measuring the refractive indices of uniaxial crystals,” Optics Communications, 202, pp.9-15, 2002.
    [23] D. Wu et al., “Refractive index sensing based on Mach–Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Applied Optics, 50, pp.1548-1553, 2011.
    [24] G. Z. Xiao et al., “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensors and Actuators A: Physical, 118, pp.177-182, 2005.
    [25] S. Lichtenberg et al., “Refractive-index measurement of gases with a phase-shift keyed interferometer,” Applied Optics, 44, pp.4659-4665, 2005.
    [26] W. Lu and W. M. Worek, “Two-wavelength interferometric technique for measuring the refractive index of salt-water solutions,” Applied Optics, 32, pp.3992-4002, 1993.
    [27] T. Z. N. Sokkar et al., “Bent induced refractive index profile variation and mode field distribution of step-index multimode optical fiber,” Optics and Lasers in Engineering, 53, pp.133-141, 2014.
    [28] Y. Xin et al., “Alcohol-filled side-hole fiber Sagnac interferometer for temperature measurement,” Sensors and Actuators A: Physical, 193, pp.182-185, 2013.
    [29] 周祐仲,「利用光學同調斷層掃描儀測量液體中不同濃度以及溫度造成折射率的變化」,國立清華大學,碩士論文,2008。
    [30] W. H. Stevenson, “Optical frequency shifting by means of a rotating diffraction grating,” Applied Optics, 28, pp.401-404, 1991.
    [31] H. Z. Cumins et al., “Translation of light frequency by a moving grating,” Journal of the Optical Society of America, 57, pp.1551, 1967.
    [32] R. N. Shagam and J. C. Wyant, “Optical frequency shifter for heterodyne interferometers using multiple rotating polarization retarders,” Applied Optics, 17, pp.3034-3035, 1978.
    [33] J. A. Dahlquist, D. G. Peterson and W. Culshaw, “Zeeman laser interferometer,” Applied Physics Letters, 9, pp.181-183, 1966.
    [34] M. G. Gazalet et al., “Acousto-optic low-frequency shifter,” Applied Optics, 33, pp.1293-1298, 1994.
    [35] D. C. Su et al., “Simple two-frequency laser,” Precision Engineering, 18, pp.161-163, 1996.
    [36] A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Optical Technologies in Biophysics and Medicine IV, pp. 393-395, 2003.
    [37] 潘思汶,「六自由度準共光程雷射干涉儀之開發」,國立台灣科技大學,碩士論文,2015。
    [38] W. Yunus and A. B. A. Rahman, “Refractive index of solutions at high concentrations,” Applied Optics. 27, pp.3341-3343, 1988.
    [39] W. Liang et al., “Highly sensitive fiber Bragg grating refractive index sensors,” Applied Physics Letters, 86, pp. 151122 , 2005.
    [40] 包明麒,「改良式共光程外差干涉術應用於表面電漿共振感測器之研究」,國立清華大學,碩士論文, 2003
    [41] S. R. Kachiraju and D. A. Gregory, “Measurement of impurity in water using Talbot interferometry,” International Society for Optics and Photonics, 44, pp. 2361-2365 , 2012.
    [42] J. Zhou et al., “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sensor Actuators B-Chemical, 208, pp.315-319, 2015.
    [43] H. El-Kashef, G. E. Hassan and I. El-Ghazaly, “Mach–Zehnder optical system as a sensitive measuring instrument,” Applied Optics, 33, pp.3540-3544, 1994.
    [44] J. Yang, L. Jiang and S. Wang, “High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Applied Optics, 50, pp.5503-5507, 2011.
    [45] R. G. Heideman et al., “Immunoreactivity of adsorbed anti human chorionic gonadotropin studied with an optical waveguide interferometric sensor,” Applied Optics, 30, pp.1474-1479, 1991.
    [46] S. H. Kim et al., “Absolute refractive index measurement method over a broad wavelength region based on white-light interferometry,” Applied Optics, 49, pp. 910-914, 2010.
    [47] T. Zhang et al., “A single-element interferometer for measuring refractive index of transparent liquids,” Optics Communications, 332, pp.14-17, 2014.

    無法下載圖示 全文公開日期 2020/08/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE