簡易檢索 / 詳目顯示

研究生: 陳重利
Chong-Li Chen
論文名稱: 含飛灰與石灰石粉水泥砂漿之耐久性與力學性質
Mechanical Properties and Durability of Mortar with Fly Ash and Limestone Powder
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 張大鵬
tapeng chang
沈得縣
Der-Hsien Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 152
中文關鍵詞: 飛灰石灰石鹼矽粒料反應耐久性碳化砂漿
外文關鍵詞: alkali-silica reaction, carbonation, limestone, fly ash, mortar, Durability
相關次數: 點閱:298下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討以飛灰及石灰石粉取代部份水泥後砂漿的耐久性及力學性質,就力學性質而言,先發現使用石灰石取代水泥10 %時,強度略為下降。因此,希望藉由添加飛灰利用其具卜作嵐反應來,彌補所失之強度,再進一步探討其耐久性。耐久性試驗的項目包括抗硫酸鹽能力、水中膨脹量、乾縮、預壓下的碳化深度及氯離子擴散試驗、碳化及鹼矽粒料反應(alkali-silica reaction,ASR)。其中,為了模擬現地建物平常處於受壓狀況,本研究量測受壓下的碳化深度及氯離子擴散。此外,由於自然環境下碳化與鹼矽粒料反應同時發生,因此試驗過程中亦嘗試預先碳化後進行加速ASR試驗、加速ASR後碳化及加速碳化與ASR交替試驗,以探討兩者同時作用下砂漿的劣化行為。
加速ASR試驗係依照ASTM C1260進行,而加速碳化試驗則是將試體置於50% CO2中再於不同齡期後取出。結果顯示,以飛灰取代水泥15%及石灰石取代水泥10%時,相較於未以飛灰及石灰石取代水泥的控制組而言,強度並未明顯降低,乾縮量、水中膨脹量及ASR膨脹量均受到抑制。碳化試驗的結果也顯示,適當的碳化可以抑制ASR的發生,因為碳化可降低孔隙水中的鹼量及增加微觀結構緻密性,漿體強度亦略為上升故可抵抗ASR的膨脹。


This study explores the mechanical properties and the durability of mortar with fly ash and limestone powders. The compressive strength of the mortar was reduced by 10% limestone addition so the fly ash was further added in order to compensate the strength loss by the pozzolanic effects in the long term. The durability of the mortar was also explored, including the sulfate resistance, expansion in water, shrinkage, alkali-silica reaction (ASR), carbonation, and chloride migration. In order to simulate the natural conditions onsite, the carbonation and the chloride migration was conducted in specimens subjected to prestress. In addition, this study tentative used new accelearated ASR techniques, such as pre-carbonation before ASR, carbonation after ASR, and alternative carbonation and ASR, to simulate the combined deteriorations in nature. The accelerated ASR was conducted in accordance to ASTM C1260 and the accelerated carbonation was conducted by exposing the specimens into 50% carbon dioxide. Results showed that the mortar with 15% fly ash and 10% limestone had low shrinkgage, expansion in water, ASR expansion, and no clear strength reduction. Moreover, the carbonation effectively reduced the ASR due to the reduction of alkalis in pore water, densified microstructure, and strength increases.

摘要 Abstract 誌謝 總目錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究方法及流程 第二章 文獻回顧 2.1 飛灰 2.2 石灰石 2.3 鹼-矽粒料反應 2.4 碳化 2.5 ASR與碳化複合劣化之影響與機理 2.6 氯離子 2.6.1 氯離子來源 2.6.2 氯離子型態 2.6.3 氯離子之擴散行為 第三章 試驗計畫 3.1 試驗變數 3.1.1 變數說明 3.1.2 編碼說明 3.2 試驗材料 3.3 試體製作及配比 3.3.1 力學試驗試體 3.3.2 耐久性質試驗試體 3.3.3 受壓試驗試體 3.4 試驗原理、方法及設備 3.4.1 力學性質 3.4.2 ASR加速試驗法 3.4.3 碳化試驗 3.4.4 碳化及ASR複合試驗 3.4.5 受壓下耐久性質試驗 3.4.6 微觀結果分析試驗 3.5 其他試驗儀器 第四章 試驗結果與分析 4.1 前言 4.2 力學性質 4.2.1 添加飛灰 4.2.2 同時添加飛灰與石灰石 4.3 耐久性質 4.3.1 乾縮 4.3.2 水中膨脹 4.3.3 硫酸鹽膨脹 4.3.3 碳化深度 4.3.4 碳化乾縮 4.3.5 鹼矽粒料反應 4.4 碳化及ASR複合劣化 4.4.1 碳化後加速ASR 4.4.2 加速ASR後碳化 4.4.3 加速ASR與碳化交替循環 4.5 受壓下之耐久性質 4.6 微觀分析 4.6.1 X光繞射分析 4.6.2 掃描式電子顯微鏡 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻 附錄A SEM圖 附錄B XRD圖

1.張舜庭,「石灰石水泥之力學與耐久性質研究」,碩士論文,國立臺灣科技大學,台北, pp. 12-15, 2012。
2.傅傅罡,「使用快速氯離子滲透試驗評估飛灰混凝土耐久性之可行性研究」,碩士論文, 國立臺灣海洋大學,基隆, pp. 4-7, 2013。
3.蔡德明,「公共工程飛灰混凝土使用手冊之介紹(上)」,臺灣省土木技師公會,台北市, pp.5-75,2005。
4.ASTM C618-12a, "Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete", ASTM International, West Conshohocken, PA, 2012.
5.蔡德明,「公共工程飛灰混凝土使用手冊之介紹(下)」,臺灣省土木技師公會,台北市, pp.5-75,2005。
6.CNS 3036,「混凝土用飛灰及天然或煆燒卜作嵐攙和物」,中華民國國家標準, 經濟部標準檢驗局,2003。
7.李明君,「正確使用飛灰以提升混凝土品質」,財團法人台灣營建研究院,台北市, pp.2-3,1996。
8.林平全,「飛灰混凝土」,科技圖書股份有限公司,台北市, pp.30-35,1991。
9.Turamli, L., Uzal, B., and Bektas, F., "Effect of large amounts of natural pzaaozlan addition on properties of blended cements", Cement and Concrete Research, Vol. 35. No. 6, pp. 1106-1111, 2005.
10.鍾廣吉,「台灣的石灰石」,遠足文化事業股份有限公司,新北市, pp.5-18,2007。
11.高昱鈞,「添加強塑劑下含飛灰與石灰石粉末之水泥漿體流變行為研究」, 碩士論文, 國立台灣科技大學,台北市, pp. 11, 2013。
12.De Weerdt, K., Kjellsen, K.O., Sellevold, E., and Justnes, H., "Synergy between fly ash and limestone powder in ternary cements", Cement & Concrete Composites, Vol. 33. No. 1, pp. 30-38, 2011.
13.黃兆龍,「混凝土性質與行為」,詹氏書局,台北市, pp.6-20,2007。
14.Mindess, S. and Young, J.F., "Concrete", Prentice-Hall, Englewood Cliffs, N.J., pp. 1981.
15.ACI 201.2R, "Guide to Durable Concrete", ACI International, Detroit, MI, 2001.
16.Stanton, T.E., "Influence of Cement and aggregate on Concrete Expansion", Engineering News-Record, pp. 59-61, 1940.
17.Okada, K., Nashibayashi, S., and Kawamura, M., "Alkali-aggregate reaction : 8th international conference", Elsevier Applied Science, London, pp. 1989.
18.Gillott, J.E., "Alkali-aggregate reaction in concrete", Engineering News-Record, pp. 303-326, 1975.
19.Hadley, D.W., "Alkali reactivity of carbonate rocks-expansion and dedolomitization", Proc.Highway Res.Board, pp. 462-474, 1961.
20.田永銘,「台灣混凝土鹼-骨材反應問題與對策」, 大陸工程公司專題演講書面資料, 國立中央大學土木工程系,桃園市, pp. 3-5, 2010。
21.Shafaatian, S.M.H., Akhavan, A., Maraghechi, H., and Rajabipour, F., "How does fly ash mitigate alkali–silica reaction (ASR) in accelerated mortar bar test (ASTM C1567)", Cement & Concrete Composites, Vol. 37. No. pp. 143-153, 2013.
22.ASTM C311M-13, "Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete", ASTM International, West Conshohocken, PA, 2013.
23.曾達裕,「超高性能混凝土之早期強度與收縮性質研究」, 碩士論文, 國立臺灣大學,台北市, pp. 17-19, 2002。
24.Michal Stehlik, J.N., "Verification of the effect of concrete surface protection on the permeability of ACID Gases using accelerated carbonation depth test in an atmosphere of 98% CO2", Brno University of Technology,, Czech Republic, pp. 59-61, 2010.
25.Bertos, M.F., Simons, S.J.R., Hills, C.D., and Carey, P.J., "A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2", Journal of Hazardous Materials, Vol. B112. No. pp. 193-205, 2004.
26.Brandt, A.M., "Cement based composites : materials, mechanical properties and performance", Taylor & Francis, New York, NY, pp. 154-161, 2009.
27.Dhir, R.K., Limbachiya, M.C., McCarthy, M.J., and Chaipanich, A., "Evaluation of Portland limestone cements for use in concrete construction", Materials and Structures, Vol. 40. No. 5, pp. 459-473, 2007.
28.Tsivilis, S., Batis, G., Chaniotakis, E., Grigoriadis, G., and Theodossis, D., "Properties and behavior of limestone cement concrete and mortar", Cement and Concrete Research, Vol. 30. No. 10, pp. 1679-1683, 2000.
29.Atiş, C.D., "Accelerated carbonation and testing of concrete made with fly ash", Construction and Building Materials, Vol. 17. No. 3, pp. 147-152, 2003.
30.Chang, C.-F. and Chen, J.-W., "The experimental investigation of concrete carbonation depth", Cement and Concrete Research, Vol. 36. No. 9, pp. 1760-1767, 2006.
31.宮川豊章, "複合劣化コンクリート構造物の評価と維持管理計画研究委員会報告書", コンク リート工学年次論文集, Vol. 23. No. 1, pp. 2-9, 2001.
32.Fernandes, I., Noronha, F., and Teles, M., "Microscopic analysis of
alkali–aggregate reaction products in a 50-year-old concrete", Materials Characterization, Vol. 53. No. 2–4, pp. 295-306, 2004.
33.松元淳一,「塩害,炭酸化およびASRの3種複合劣化環境におけるコンクリートのASR膨張特性に関する研究」,土木学会第63回年次学術講演会,pp.197-198,2008。
34.CNS 12891,「混凝土配比設計準則」,中華民國國家標準,經濟部標準檢驗局,1998。
35.Arya, C., Buenfeld, N.R., and Newman, J.B., "Factors influencing chloride-binding in concrete", Cement and Concrete Research, Vol. 20. No. 2, pp. 291-300, 1990.
36.Song, H.W., Lee, C.H., and Ann, K.Y., "Factors influencing chloride transport in concrete structures exposed to marine environments", Cement and Concrete Composites, Vol. 30. No. 2, pp. 113-121, 2008.
37.黃兆龍,「混凝土中氯離子含量檢測技術及試驗」,詹氏書局,台北市, pp.2-21,2002。
38.Crank, J., "The Mathematics of Diffusion", OXFORD, New York, pp. 1-10, 1959.
39.蘇銘鴻,「電滲法運用於抑制鹼質與粒料反應之基礎研究」, 碩士論文, 國立中央大學,桃園縣, pp. 9, 2002。
40.Maries, A., "The activation of Portland cement by carbon dioxide, in: Proceedings of Conference in Cement and Concrete Science", Oxford,UK, pp. 203-228, 1985.
41.張舜庭,「石灰石水泥之力學與耐久性質研究」, 碩士論文, 國立臺灣科技大學,台北, pp. 161-164, 2012。
42.ASTM C150/C150M-11, "Standard Specification for Portland Cement", ASTM International, West Conshohocken, PA, 2011.
43.ASTM C452/C452M-10, "Standard Test Method for Potential Expansion of Portland-Cement Mortars Exposed to Sulfate", ASTM International, West Conshohocken,PA, 2010.
44.ASTM C441/C441M-11 "Standard Test Method for Effectiveness of Pozzolans or Ground Blast-Furnace Slag in Preventing Excessive Expansion of Concrete Due to the Alkali-Silica Reaction", ASTM International, West Conshohocken, PA, 2011.
45.ASTM C 128-07, "Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate", ASTM International, West Conshohocken, PA, 2007.
46.ASTM C305-13, "Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency", ASTM International, West Conshohocken, PA, 2013.
47.ASTM C490/C490M-11e1, "Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete", ASTM International, West Conshohocken, PA, 2011.
48.ASTM A596/A596M-95, "Standard Test Method for Direct-Current Magnetic Properties of Materials Using the Ballistic Method and Ring Specimens", ASTM International, West Conshohocken, PA, 2009.
49.ASTM C511-13, "Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes", ASTM International, West Conshohocken, PA, 2013.
50.ASTM C1038/C1038M-14, "Standard Test Method for Expansion of Hydraulic Cement Mortar Bars Stored in Water", ASTM International, West Conshohocken, PA, 2014.
51.ASTM C1260-07, "Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)", ASTM International, West Conshohocken, PA, 2007.
52.ASTM C109/C109M-13, "Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)", ASTM International, West Conshohocken, PA, 2013.
53.ASTM C39/C39M-14, "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens", ASTM International, West Conshohocken, PA, 2014.
54.楊韙誠,「鹼矽粒料反應下水泥砂漿的碳化與氯離子擴散行為研究」, 碩士論文, 國立臺灣科技大學,台北, pp. 36-50, 2013。
55.RILEM CPC-18, "CPC-18 Mesurement of hardened concrete cabonation depth", ASTM International, West Conshohocken, 1985.
56.AASHTO T260-97, "Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials", American Association of State Highway and Transportation Officials, Washington, D.C., 1997.
57.ASTM C143/C143M-12, "Standard Test Method for Slump of Hydraulic-Cement Concrete", ASTM International, West Conshohocken, PA, 2012.
58.官毅明,「鹼-矽膠體的形貌與組成」, 碩士論文, 國立中央大學,中壢, pp. 9-144, 2012。

無法下載圖示 全文公開日期 2019/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE