簡易檢索 / 詳目顯示

研究生: 張帆
Fan - Chang
論文名稱: 微弧氧化對純鋁及熱浸鍍鋁低碳鋼表面改質之影響
Surface modification of pure Aluminum and hot-dip aluminized carbon steel by micro-arc oxidation technique
指導教授: 王朝正
Chaur-jeng Wang
口試委員: 李志偉
Jyh-wei Lee
周振嘉
Chen-chia Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 101
中文關鍵詞: 熱浸鍍鋁微弧氧化占空比電壓電流曲線顯微結構奈米壓痕腐蝕試驗
外文關鍵詞: hot-dipped aluminizing, micro-arc oxidation, duty cycle, I-V curve, microstructure, nanoindenter, corrosion test
相關次數: 點閱:325下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋁及鋁合金質輕且易加工,可以製成非常複雜的零件,因而在工業上的應用日益廣泛;鋼鐵則具有高強度高韌性之特性;由於微弧氧化技術能夠有效提升輕金屬材料之常溫耐蝕性,故本研究利用微弧氧化技術以改變占空比與脈衝頻率之方式在純鋁及熱浸鍍鋁表面製備富含氧化鋁的陶瓷膜;本實驗分成兩個階段,第一階段以純鋁作為基材直接進行微弧氧化,藉由改變製程參數鍍製氧化鋁膜。第二階段使用低碳鋼作為底材,先進行熱浸鍍鋁作業使表面覆蓋鋁化層,接著再進行微弧氧化實驗以製備出氧化鋁膜層。本研究在微弧氧化過程中同時進行電源之電壓-電流監控與電漿光譜分析,並且分析氧化鋁膜的微結構、機械性質與抗蝕性質,以探討不同占空比對氧化鋁膜特性之影響。經實驗結果發現,隨著占空比下降,尖峰功率密度上升,氧化鋁層表面粗糙度、氧化鋁膜層厚度也隨之上升。另一方面,藉由固定占空比改變脈衝頻率時,尖峰功率密度隨著脈衝頻率增加而上升,氧化鋁膜層厚度也隨之增加。在低碳鋼熱浸鍍鋁後的表面微弧氧化的實驗部分,試片表面發出電漿弧光之主要元素為鋁和鈉,且鈉之訊號強度隨著反應時間不斷增強。經由實驗結果發現,有微弧氧化處理後的試片之表面粗糙度會些微上升,而硬度則有顯著增大,最高達到15 GPa以上,而常溫抗腐蝕性質也有明顯的改善。


    Recently, the micro-arc oxidation (MAO) or the so-called plasma electrolytic oxidation (PEO) process has been widely studied and applied in industries due to its ability to create functional oxide layers on light metals. In this work, a high power current pulse power supply was used for the micro-arc oxidation coating on surfaces of pure aluminum and the hot-dipped aluminized steel substrates. The first stage of the experiment was controlling the duty cycle and frequency of power supply to fabricate five different MAO coatings on the pure Al. The second stage was a hybrid method consisting of the hot-dipped aluminizing (HDA) and MAO processes to deposit a composite ceramic coating on the surface of carbon steel plate. The HDA of carbon steel plate was executed at 710oC for 1 min. The duty cycle and frequency of MAO processes were adjusted to fabricate three different HDA plus MAO coatings. The phase analysis and microstructure of coatings were determined by X-ray diffractometer (XRD) and scanning electron microscopy (SEM), respectively. The hardness and adhesion of coatings were determined by the nanoindenter and scratch tester. The corrosion resistance of coatings was evaluated by the potentiodynamic polarization test in 0.5M H2SO4 aqueous solution. It was found that the peak power density increased with decreasing duty cycle at fixed frequency. Meanwhile, the thickness and roughness of MAO coating also increased. On the other hand, the peak power density and thickness of MAO coating increased with increasing frequency at fixed duty cycle. The main elements of the plasma were Al and Na species during the MAO process on the HDA steel surface. The intensity of Na plasma increased with reaction time. For the MAO coating on the HDA steel surface, the surface roughness slightly increased and the hardness greatly enhanced to higher than 15 GPa. In addition, the corrosion resistance of the MAO coating also improved effectively.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 熱浸鍍鋁 4 2.1.1 熱浸鍍鋁技術與應用 4 2.1.2 熱浸鍍鋁材結構及形成機制 4 2.1.3 熱浸鍍鋁材高溫擴散後之相變化 5 2.1.4 鋁化塗層之效用 5 2.1.5 鋁化塗層之厚度值 5 2.1.6 熱應力 10 2.2 鋁之陽極處理 12 2.2.1 陽極氧化膜 12 2.2.2 鋁之陽極氧化膜形成 12 2.2.3 陽極氧化膜之成形化學反應 14 2.3 微弧氧化 15 2.3.1 微弧氧化背景介紹 15 2.3.2微弧氧化原理 15 2.3.3電壓電流曲線 16 2.3.4 電解液之選擇和影響 18 2.3.5 微弧氧化技術與應用 20 2.3.6 微弧氧化技術與陽極處理之比較 21 2.3.7 微弧氧化技術之文獻參數比較 23 第三章 實驗方法 25 3.1實驗流程 25 3.1.1 第一階段實驗:純鋁之微弧氧化處理 25 3.1.2 第二階段實驗:熱浸鍍鋁低碳鋼之微弧氧化處理 25 3.2實驗方法與步驟 28 3.2.1 第一階段實驗:純鋁之微弧氧化處理 28 3.2.1.1 試片尺寸與製備 28 3.2.1.2 微弧氧化實驗步驟如下 28 3.2.2 第二階段實驗:熱浸鍍鋁低碳鋼之微弧氧化處理 29 3.2.2.1 試片尺寸與製備 29 3.2.2.2 熱浸鍍鋁作業 30 3.2.2.3微弧氧化處理 31 3.3 實驗參數 31 頻率與占空比 33 3.4 膜層性質分析 34 3.4.1 光譜分析 34 3.4.2 表面形貌與截面厚度分析 35 3.4.3 晶體結構分析 36 3.4.4 硬度試驗 36 3.4.5 刮痕試驗 37 3.4.6 電化學腐蝕檢測 39 第四章 結果與討論 40 4.1純鋁之微弧氧化處理 40 4.1.1不同脈衝參數對輸出電壓-電流之影響 40 4.1.2晶相分析 45 4.1.3 表面形貌與成分分析 48 4.1.4 表面粗糙度分析 52 4.1.5截面形貌與厚度量測 54 4.1.6 硬度分析 57 4.1.7 附著性分析 60 4.2熱浸鍍鋁低碳鋼之微弧氧化處理 62 4.2.1 不同占空比對輸出電壓-電流之影響 62 4.2.2 MAO反應過程中之OES分析 65 4.2.3 晶相分析 70 4.2.4 表面形貌分析 72 4.2.5 表面粗糙度分析 74 4.2.6截面厚度與成份分析 75 4.2.7 硬度分析 80 4.2.8 附著性分析 84 4.2.9 抗腐蝕性質檢測 86 4.3恆溫高溫氧化性質評估 90 4.3.1 試片巨觀形貌 91 4.3.2 重量變化分析 93 4.3.3高溫氧化後表面微結構形貌分析 94 第五章 結論 96 參考文獻 98

    [1]L.R. Krishna, A.S. Purnima, G. Sundararajan, "A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings", ScienceDirect wear 261(2006) 1095-1101.
    [2]王朝正、涂宗漢,“低碳鋼於氯化鈉之熱腐蝕機制及熱浸鋁之防制改善”,防蝕工程,第9 卷,第4 期,pp. 225 - 237 (1995)。
    [3]C.J. Wang, J.W. Lee, T.H. Twu, "Corrosion behaviors of low carbon steel, SUS310 and Fe–Mn–Al alloy with hot - dipped aluminum coatings in NaCl - induced hot corrosion", Surface and Coatings Technology, pp. 37-43 (2003).
    [4]R. Sivakumar, E.J. Rao, Oxid.Met, "An investigation of pack-aluminide coating on steel", Vol. 17, p. 391 (1982).
    [5]T. Zhang, L.G.A. Capuano, A. Dang, U. Bernabai, F. Felli, Oxid.Met., Vol 39, p. 263 (1993).
    [6]T. Zhang, D.Y. Li, Mater. Sci. Eng. A277, p. 18 (2000).
    [7]W. Gao, G. Li, "The Development and Application of Hot-Dip Aluminum Coating", Heat Treatment of Metals, Vol. 6, pp. 11-15 (1991).
    [8]日本複合材料協會,“熱浸鍍處理法”,表面技術雜誌,117期,pp. 135(1975)。
    [9]鄭維仁、王朝正,“以EBSD 觀察低碳鋼熱浸鋁矽塗層於高溫相變化之行爲”,防蝕工程,第22 卷,第4 期,pp. 287-294 (2008)。
    [10]L.N. Larikov, V.M. Falchenko, D.F. Polishebuk, V.R. Ryabov, A.V. Lonovskays, in: G. V. Samsonov(Ed.), “Protective Coatings on Metals”, vol. III, pp. 56 (1971).
    [11]鄭維仁、王朝正,“以EBSD 觀察低碳鋼熱浸鋁化層的成長行為”, 海峽兩岸材料腐蝕與防護研討會,pp. 1409-1418 (2008)。
    [12]洪舜立,“低碳鋼熱浸鍍鋁之研究”,國立台灣工業技術學院機械研究所,碩士學位論文(1993)。
    [13]M.W. Chase, J.L. Curnutt, R.A. McDonlad, A.N. Syverud, J. Phys, "Stoichiometry and thermodynamics of metallurgical processes", JANAF thermochemical tables, 7(1978)793.
    [14]S. Kobyashi, T. Yakou, "Control of intermetallic compound layers at interface between steel and Aluminum by diffusion-treatment", Materials Science and Engineering A361, Vol. A338, pp. 44-53 (2002).
    [15]W.F. Smith, "Principles of Materials Science and Engineering", 2Ed, McGraw-Hill Publishing Company, American, pp. 843-844 (1990).
    [16]G. Eggler, H. Vogel, H.J. Kaesche, Parket Metallogr, Vol.22, pp. 162-173 (1985).
    [17]Hrbek, "The Effect of Speed on the Thickness of the Coating Produced During Metallizing in Liquid Metals", Metal Finishing Journal, pp. 298-302 (1961).
    [18]洪舜立、王朝正、林坤正,“田口實驗設計於低碳鋼熱浸純鋁之應用的研究”,防蝕工程,第11 卷,第1 期,pp. 1-7 (1997)。
    [19]陳鵬交,“430 不銹鋼熱浸鍍鋁矽之高溫氧化”,國立台灣工業技術學院機械研究所,碩士學位論文(2004)。
    [20]J.H. Sun, E. Chang, C.H. Chao, M.J. Cheng, "The Spalling Modes and Degradation Mechanism of ZrO2-8 wt%Y2O3/ CVD-Al2O3/ Ni-22Cr-10Al-1Y Thermal-Barrier Coatings", Oxidation of Metals, Vol. 40, pp. 465-473 (1993).
    [21]W.H. Cubberly, "Metals Handbook", American Society for Metals, 9th Ed.,Vol.5, pp. 333-347 (1983).
    [22]F. George, V. Vander, "Metallography Principle and Practice", McGraw-Hill Book Company (1984).
    [23]H. Masuda, F. Hasegwa, S. Ono, "Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution", J. Electrochem. Soc. vol. 144, pp. L127-L130 (1997).
    [24]G.E. Thompson, "Porous anodic alumina: fabrication, characterization andapplications", Thin solid film, 297 (1997) 192.
    [25]O. Jessensky, F. Muller, U. Gosele, "Self-organized formation of hexagonal pore arrays in anodic alumina", Appl, Phys, Lett, Vol. 72, pp. 1173 (1998).
    [26]F. Li, L. Zhang, R.M. Metzger, "On the Growth of Highly Ordered Pores in AnodizedAluminum Oxide," Chem. Matter. 10, 2470 (1998).
    [27]N.P. Sluginov, J. Russ. Phys. Chem. Soc., 12 1-2 Phys. (1880) 193.
    [28]A. Gunterschultze, H. Betz, Electrolytkondensatoren, Krayn, Berlin (1937).
    [29]W. McNiell, G.F. Nordbloom, US Patent 2,854,390 (1958).
    [30]W. McNiell, L.L. Gruss, US Patent 3,293,158 (1966).
    [31]G.A. Markov, G.V. Markova, USSR Patent 526,961, Bul. Inv. 32, 1976.
    [32]P. Kurze, W. Krysmann, G. Marx, Z. Wiss, Tech. Hochsch. Karl-Marx-Stadt 24 (1982) 139.
    [33]E. Matykina, R. Arrabal, A. Mohamed, P. Skeldon, G.E. Thompson, Corrosion Science 51 (2009) 2897.
    [34]A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, "Plasma electrolysis for surface engineering," Surf. Coat. Technol., 122 (1999)73-93.
    [35]V.I. Tchernenko, L.A. Snezhko, I.I. Papanova, Coatings by Anodic Spark Electrolysis, Khimiya, Leningrad, 1991, in Russian.
    [36]G.A. Markov, V.I. Belevantsev, O.P. Terleeva, E.K. Shulepko, A.I. Slonova, Vestn. MGTU Ser. Mashinostr. 1 (1992) 34, in Russian.
    [37]V.S. Rudnev, P.S. Gordiyenko, Zashch. Met. 29 (2) (1993) 304, in Russian.
    [38]A.V. Timoshenko, S. Gut, B.K. Opara, K. Pshibylovich, Y.V. Magurova, Zashch. Met. 30 (2) (1994) 175, in Russian.
    [39]L.S. Saakiyan, A.P. Efremov, I.A. Soboleva, Zashch. Met. 30 (1) (1994) 101, in Russian.
    [40]A.L. Yerokhin, V.V. Lyubimov, A.A. Voevodin, Proceedings of International Conference on Advanced & Laser Technology ‘ALT’92’ (2) (1992) 52, Institute ofGeneral Physics of the Russian Academy of Science, Moscow, 1992.
    [41]P.I. Butyagin, Y.V. Khohryakov, A.I. Mamaev, Mater.Lett, 57 (2003) 1748.
    [42]A.L. Yerokhin, Lyubimov, V.V.A. Ashitkov, R.V, Ceramics International, 28 (1996) 1-6.
    [43]E. Matykina, A. Berkani, P. Skeldon, G.E. Thompson, Electrochim. Acta 53 (2007) 1987–1994.
    [44]A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. Dowey, Surf. Coat. Technol.122 (1999) 73–93.
    [45]R.H.U. Khan, A.L. Yerokhin, T. Pilkington, A. Leyland, A. Matthews, Surface and Coating Technology, 200 (2005) 1580-1586.
    [46]薛文斌、鄧志威、來永春、陳如意、張通和,“有色金屬表面微弧氧化技術評述’’,金屬熱處理,第1期,第1-3頁(2000)。
    [47]G. Sundararajan, L.R. Krishna, "Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology", Surface and Coatings Technology 167 (2003) 269–277.
    [48]M. Javidi, H. Fadaee, "Plasma electrolytic oxidation of 2024-T3 aluminum alloy andinvestigation on microstructure and wear behavior", Applied Surface Science 286 (2013) 212– 219.
    [49]N. Godja, N. Kiss, C.h. L‥ocker, A. Schindel, A. Gavrilovic, J. Wosik, R. Mann, J. Wendrinsky, A. Merstallinger, G. Enauer, "Preparation and characterization of spark-anodized Al-alloys: Physical, chemical and tribological properties", Tribology International 43 (2010) 1253–1261.
    [50]Y.M. Wanga, H. Tian, X.E. Shen, L. Wen, J.H. Ouyang, Y. Zhou, D.C. Jia, L.X. Guo, "An elevated temperature infrared emissivity ceramic coating formed on 2024 aluminium alloy by microarc oxidation," Ceramics International39(2013)2869–2875.
    [51]W.C. Oliver, G.M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments", Journal of Materials Research, vol. 7, 1992, pp. 1564-1583.
    [52]M. Oden, C. Ericsson, G. Hakansson, H. Ljungcrantz, "Microstructure and mechanical behavior of arc-evaporated Cr–N coatings", Surface and Coatings Technology, vol. 114, 1999, pp. 39-51.
    [53]F.J. Mecuson, T. Czerwiec, G. Henrion, T. Belmonte, L. Duiardin, A. Viola, J. Beauvir, Surface and Coatings Technology, 201 (2007) 8677-8682.
    [54]J.M. Wheeler, J.A. Curran, S. Shrestha, "Microstructure and multi-scale mechanical behavior of hard anodized and plasma electrolytic oxidation (PEO) coatings on aluminum alloy 5052", Surface & Coatings Technology 207 (2012) 480–488.
    [55]L.L. Hong, S.D. Jiu, Z.J. Wu, S. Jian, L. Liang, "Evolution of micro-arc oxidation behaviors of the hot-dipping aluminum coatings on Q235 steel substrate", Applied Surface Science 257 (2011) 4144–4150.
    [56]W.J. Cheng, C.J. Wang, "Characterization of intermetallic layer formation in aluminide/nickel duplex coating on mild steel", Materials Characterization, 69 (2012)63-70.
    [57]莊哲豪,“陽極處理之低碳鋼熱浸鍍鋁於氯化鈉水溶液與高溫環境之腐蝕行為探討”,國立台灣工業技術學院機械研究所,碩士學位論文(2009)。

    QR CODE